اثر مواد فعال سطحی غیر باری بر سرعت تشکیل هیدرات متان و ظرفیت ذخیره‌سازی آن

هرس فخاریان، عباس نادری فرد، حمید کنجه و محمد رحمانی

1-دانشگاه صنعتی امیرکبیر، دانشکده مهندسی شیمی
2-پژوهشگاه صنعت نفت

ganjih@ripi.ir

 Tween-80 و Tween-20 مواد فعال سطحی غیر باری بر سرعت تشکیل هیدرات و ظرفیت ذخیره‌سازی آن است.

در سال‌های اخیر این ابزار استفاده از هیدرات غاز باری برای ذخیره‌سازی و انتقال گاز مطرح شده است. پیدایش کمیتی و کیفیتی از گاز طبیعی مایع شده، تولید و منتقل نموده. هدف اصلی در این تحقیق بررسی تأثیر مواد فعال سطحی غیر باری و Tween-80 و Tween-20 بر روی سرعت تشکیل هیدرات متان و ظرفیت ذخیره‌سازی آن است.

Tween-20 با غلظت‌های ۲۰۰۰ و ۸۰۰۰ ppm
با غلظت‌های ۱۰۰ و ۵۰۰ ppm
با غلظت‌های ۱۰۰۰ و ۵۰۰۰ ppm
با غلظت‌های ۱۰۰۰۰ و ۵۰۰۰۰ ppm
با غلظت‌های ۲۰۰۰۰ و ۱۰۰۰۰۰ ppm
با غلظت‌های ۱۰۰۰۰۰ و ۱۰۰۰۰۰۰ ppm

 Tween-80

 Tween-20

 Tween-80

 Tween-80
ظرفيت ذخيره سيزيدي مادة في هيدرات، توصى مواد فعال سطحي و هيدروتروبها موضوع تحقيق برخي محققين شده است [10-15].

هدف اصلی در این تحقيق، بررسی سرعت تشكیل و ظرفيت ذخيره سيزيدي مادة في هيدرات، در حضور و مده فعال سطحي غير بوني بوده است.

روش کار
تجهیزات مورد استفاده در این تحقیق همان سیستم گنجی و همکاران [15] می باشد: فقط در انجا تغییرات دما و فشار توسط کامپیوتر ثبت شده است. سیستم مورد استفاده از یک راکتور تحت شرطی داده از جنس فلز عادی دهنده 10 cm مجسمه با هزینه با قطر داخلی 6/7 cm، ارتفاع و حجم داخلی 000.3 تهیه شده است. از دمای و فشار درجه کی از 1 برای اندازهگیری دما و فشار در راکتور مستقل شده است. راکتور درون محیط سرمایه مشکل از آب و اتانول گلیکول قابل ت بشنوی نظیمه دما، قرار داده شده است.

مواد مورد استفاده
متن بر خلوص 99/9% از شرکت رهام گاز برای تشكیل هيدرات در آب دیونیژ مورد استفاده قرار گرفته است. مواد افزودنی مورد استفاده در این آزمایش ها عبارتند از: C₅₈H₁₁₂O₃₈ (TWEEN-20) 1- تونیون 50000 بر فرمال شیمیایی شرکت مرك آلمن C₆₀H₁₂O₃₈ (TWEEN-80) 2- تونیون 8000 بر فرمال شیمیایی شرکت مرك آلمن SDS 3- سدیم دودسولفونات (SDS) بر فرمال شیمیایی از شرکت مرك آلمن

تعیین سرعت تشكیل هيدرات
ابتدا راکتور با آب ذوب نهاده شده و پس از محلول آبس با گلفت های مختلف از مواد افزودنی که به جدول 1 آمده است، داخل آن می زدهم.

۱۹۸۷ میلادی، توسط ریپمنستر [1] کشف شد، و در این آزمایش موارد استفاده قرار گرفته است.

عمل مراجعی نشان داده می شود، در سال ۱۵۰۰، که توجه یافتند که تغییرات ۱۵ درجه سانتی نفت و گاز به شرایط تشكیل و روش جلوگیری از آن شده است. دقیقاً به همین دلیل، تولید هيدرات مورد نظر جهت توجه کمتری به شرایط تولید و عوامل مؤثر بر آن شده است. اگر دو دهم اخیر مطالعاتی در زمینه فرآیند تشكیل هيدرات و افزایش سرعت تشكیل سیزيدي مادة در هيدرات، در مابین این دو عامل، هيدرات شدت آن شدته، محمد در سال ۱۸۴۱ [۴]، در تحقیق [۵] به دلیل موارد ای که به توجه می شود، دارند که افزایش سرعت تشكیل هيدرات همراه با افزایش سرعت تشكیل هيدرات در محیط سه بعدی متغیر می شود.

در زمینه زیادین پژوهش در سال ۲۴۹۱ [۴]، توجه داشتند. در این آزمایش ها با توجه به شرایط تولید و عوامل مؤثر بر آن شده است. این دو دهم اخیر مطالعاتی.
برای تعیین سرعت تشکیل هیدرات منان از تغییرات فشار با زمان و ارتباط آن به مقدار مول صرف گاز از روشنی که در یک بخش قابل توجه داده شد، استفاده گردید. همچنین علایه بر سرعت تشکیل هیدرات منان درصد گاز آن نیز مورد مطالعه قرار گرفته است.

سرعت تشکیل هیدرات
شکل ۱ تغییرات فشار و مولهای مصرفی گاز منان در حضور آب خاص را با گذشت زمان نشان می‌دهد. كم شدن فشار راکتور از حدود ۱۶۰۰ psi به دلیل سرعت گذشت زمان راکتور از ۲۵ درجه دما مورد نظر باشد. ملاحظه می‌شود که در شرایط آزمایشی، حدود ۶۰ ساعت طول می‌کشد تا بیشتر به حالت تعادل ترمودینامیکی برسد و تشکیل هیدرات منان کننده می‌باشد. البته سرعت تشکیل هیدرات با عواملی از قبیل سرعت هم حورده‌ای و فشار تشکیل وابسته است. در هر صورت، سرعت تشکیل هیدرات منان در شرایط مختلف با پایین می‌باشد. برای افزایش سرعت هیدرات از تسیر گردیده استفاده شده است. برای بررسی اثر مواد افزودنی بر سرعت تشکیل هیدرات، تمامی آزمایش‌ها در شرایط یکسان انجام شده است.

شیمی و فیزیکی

tabl1- محدوده مورد استفاده در آزمایش (ppm)
<table>
<thead>
<tr>
<th>نام ماده افزودنی</th>
<th>غلظت</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tween-80</td>
<td>۲</td>
</tr>
<tr>
<td>Tween-20</td>
<td>۳</td>
</tr>
<tr>
<td>SDS</td>
<td>۵</td>
</tr>
</tbody>
</table>

سفره با یاز گرد کردن شیر ورودی گاز منان، فشار راکتور به دسته ۱۶۰۰ psi بی‌حدود ۲۵ °C بی‌حدود راکتور و دمای راکتور به دلیل تعادل راکتور با ۲۵ °C کاهش داده و در این زمان که منان صرف می‌باشد هموارا بر سرعت فشار راکتور با گذشت زمان، تشکیل هیدرات را پیگیری می‌نماییم. در حالت تشکیل هیدرات (انتهای زمان تأخیر)، فشار شروع به افت ناگهانی کرده و به دلیل گرمایه پیدا آن، واکنش دما مقداری للأزایی می‌پذیرد. مقدار گاز باقی‌مانده داده راکتور از رابطه ۱ محاسبه است:

\[n = \frac{PV}{ZRT} \]

در این رابطه و به ترتیب فشار، حجم و دما گاز می‌باشد. رابطه Peng Robinson Zyah باشد که از رابطه که فشار سیستم به فشار تعادل سه فازی در دمای ۲۵ °C رسانده می‌شود و تقریباً به مدت ۱ ساعت ثابت مانده، تشکیل هیدرات متوقف می‌شود.

تبیین درصد گاز هیدرات (ظرفیت ذخیره‌سازی)

با محاسبه مقدار گاز مصرفی در هر لحظه، حجم گاز در هر حجم از هیدرات در شرایط استاندارد با استفاده از رابطه ۲ تعیین می‌شود [۱۶]؛

\[\frac{V}{V_H} = \left(\frac{1000 + 22.4}{1} \right) \left(\frac{M_w}{\rho_w + \Delta \gamma} \right) n \]

در این قسمت اثر داده و نمودار سطحی غیر پوینتی بر سرعت تشکیل هیدرات منان مورد بررسی قرار می‌گیرد. همچنین از مول افزودنی SDS آبی‌رنگ در غلظت ppm برای معیار استفاده شده است. شکل ۲ اثر مواد افزودنی استفاده شده را در گلظت‌های مشخص بر سرعت تشکیل هیدرات منان نشان می‌دهد.
أثر مواد فعال سطحي غير يوني بر سرعة تشكيل هيدرات متان (ب حسب الف) تغييرات فشار و ب) تغييرات مصرف غاز

شکل 1- تغييرات فشار و مصرف غاز متان در اثر تشكيل هيدرات در آب خالص

شکل 2- اثر مواد فعال سطحي غير يوني بر سرعة تشكيل هيدرات متان (ب حسب الف) تغييرات فشار و ب) تغييرات مصرف غاز
مانند گونه‌که مشاهده می‌شود می‌تواند به غیر از محلول ۵ درصد تحقیقات ریس سفید و مادر نسبت ثابت نشود. بنابراین در تحقیقات مورد استفاده قرار گرفته، به عنوان یک آماده است. نشان می‌دهد که مایع تمرینگنگی در دو محلول ۲ و ۳ بازدارنده‌های تشکیل‌های مایع‌سازنده و طوری که ۲۰ تکثیر مطلوب و مرکب این افزودنی از محلول ۲۸ ثانیه، بهداشت ۲۰۰۰ ppm مصرف کرده است. مطلوبیت ۲۰۰۰ ppm توسط مصرف مایع تمرینگنگی در محلول ۲۰۰۰ ppm مصرف شود. نوبت‌های مایع ۳۰۰۰ ppm مصرف شود ۱۰۰۰ ppm

درباره افزودنی مایع تمرینگنگی در محلول ۲۰۰۰ ppm مصرف شود و در کل مایع ۶۰ ثانیه بهداشت و در گذشت ۸۲ ثانیه، بهداشت ۶۰ ppm نسبت دارد. در مورد حفظ تمرینگنگی در محلول ۲۰۰۰ ppm مصرف شود، نوبت‌های مایع ۱۰۰۰ ppm مصرف شود و در کل مایع ۶۰ ثانیه بهداشت و در گذشت ۸۲ ثانیه، بهداشت ۶۰ ppm نسبت دارد.

۱. Critical Micelle Concentration
می‌شود. این موضوع در مورد تشکیل هیدرات در آب خالص پس از سبزی گاز شدن زمان تأخیر، رشد آغاز می‌گردد به شیب کمی همراه است و پس از این مراحل، رشد هیدرات با سرعت کم آدامه می‌پاید. در این بین در برخی از مقایسه، روند رشد با تغییرات اندازه همراه است. مثال در فاصله زمانی 21 و 22 ساعت که این موضوع را می‌توان به ماهیت تصادفی هسته‌ای و رشد مستحلاً نسبت داد.

در مورد نمونه 4، زمان تأخیر، کمی از آب خالص توانسته است، ولی سرعت رشد بیشتری می‌باشد. به گونه‌ای که پس از سبزی گاز حدود 12 ساعت، میزان طرفیت ذهبنامه‌هایی و دیگر حجم این آب از آب خالص پس از سبزی گاز حدود 30 ساعت، رشد هیدرات متوقف شده و متنحی تحت خاک شده.

نتیجه‌گیری

با بررسی در مورد فعال سطحی غیر بیوشیمی یکی از مشخصات شد که نتایج 20 ppm در غلظت Tween-20/آب در سرعت 1000 ppm تشکیل هیدرات را افزایش دهد. اما در غلظت 1000 ppm به صورت مؤثری تر تشکیل هیدرات جلول‌گری می‌کند. به گونه‌ای که بعد از گذشت 28 ساعت، تنا نتایج 2000 ppm می‌شود. در حالتی که غلظت 2000 ppm از همه ماده و با گذشت مدت مشابه، نسبت مصرف 65/5 در هر دو غلظت می‌شود. در غلظت 500 ppm کار رفت، سرعت تشکیل هیدرات را کم می‌نمود و اثر باردارندگی شدیدتری از Tween-80 در 100 ppm اثر باردارندگی شدیدتری از Tween-80/آب در هر دو غلظت به کار رفت 2000 ppm کمتری یافت. همچنین بیشترین طرفیت SDS 150 ppm از Tween-80/آب در هر دو غلظت به کار رفت 2000 ppm کمتری یافت. همچنین بیشترین طرفیت SDS 150 ppm از Tween-80/آب در هر دو غلظت به کار رفت.

تشکر و قدردانی

این تحقیق در پژوهشگاه صنعت نفت انجام شده و نویسندگان مقاله کمال تشرک و آقایان محمد کامی و حسین رحمی مفرد بابت کمک‌هایی به دریغ‌دان‌دارند.

بحث و نتیجه‌گیری

به دلیل حلال‌کشی کم گاز در آب، هیدرات معمولاً در سطح نمونه‌های ترسیمی کم شده و به خاطر سبکتر بودن هیدرات نسبت به آب، هیدرات تشکیل شده به سطح آب آمده و عامل فعال یافته را گرفته درون آب می‌شود. با استفاده از مواد فعال سطحی، حالات گاز در آب افزایش بیانگر و ذرات ریز هیدرات علائم بر روی آب نیز تشکیل می‌شود. این باعث افزایش سطحی مصرف و سرعت بیشتری انجام جرم شده و موجب می‌گردد که مقادیر کمتری در فضایی بین هیدرات گیر بپذیرد [15]. در اینجا بیشترین میزان طرفیت ذهبنامه‌هایی در حضور غزه می‌باشد. این در حالت است که در شرایطی مشابه با آب خالص، این فاکتور با افزایش 96/8 به دست آمد.

در فصول دوم تغییرات میزان طرفیت ذهبنامه‌هایی در گازهای مختلف آب می‌باشد. این در حالت است که در شرایط مشابه با آب خالص، این فاکتور با افزایش 96/8 به دست آمد.

در مورد تشکیل هیدرات با نمونه 5 که سرعت کندنی قوی است، پس از زمان تأخیر بسیار کم (در حدود چند دقیقه)، رشد سریع هیدرات با شیب زاید اتفاق افتاده و با گذشت حدود یک ساعت، هیدرات به حالت تعادل رسید در این مرحله و رشد متوقف شده و متنحی تحت خاک شده.

