مطالعه تجربی و شبیه‌سازی CFD اندازه‌گیری جریان دوفازی با استفاده از دبی‌سنج روزنه‌ای

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی شیمی، نفت و گاز دانشگاه علم و صنعت ایران

2 دانشکده مهندسی شیمی، نفت و گاز دانشگاه علم و صنعت ایران/پژوهشکده اندازه‌گیری جریان سیالات، دانشگاه علم و صنعت ایران

10.22078/pr.2019.3642.2711

چکیده

با توجه به اهمیت اندازه‌گیری جریان‌های چند‌فازی در صنایع نفت، گاز، پالایش و پتروشیمی، در این مطالعه به امکان‌سنجی روش‌های مختلف اندازه‌گیری جریان دوفازی آب و هوا پرداخته شده است. مدار جریان دو‌فازی مورد استفاده و تجهیزات آن شامل دبی‌سنج روزنه‌ای و مانومتر جیوه‌ای، با توجه به استانداردهای مربوطه طراحی و ساخته شد. در مدار دوفازی طراحی شده، دبی هر یک از فازهای آب و هوا قبل از ورود به ناحیه اختلاط و تشکیل جریان دوفازی با استفاده از دبی‌سنج‌های الکترومغناطیسی و توربینی اندازه‌گیری شدند. دبی جرمی کل عبوری از دبی‌سنج روزنه‌ای برابر با مجموع دبی‌های جرمی اندازه‌گیری شده توسط دبی‌سنج‌های الکترومغناطیسی و توربینی است. با استفاده از دبی‌سنج روزنه‌ای موجود در مدار دوفازی و مشخص بودن دبی جرمی کل جریان دوفازی عبوری از آن، افت‌فشار دبی‌سنج روزنه‌ای به‌ازای مقادیر مختلف دبی و کسر حجمی فازهای آب و هوا در جریان دوفازی تعیین شد. محدوده تغییرات عدد رینولدز جریان دوفازی 10000-744 و محدوده تغییرات کسر حجمی هوا 40%-15% در نظر گرفته شد. در این مطالعه، تأثیر عدد رینولدز و کسر حجمی هوا در جریان دوفازی بر عملکرد دبی‌سنج روزنه‌ای بررسی شد. در جریان‌سنج روزنه‌ای، در اعداد رینولدز پایین که الگوی جریان پیستونی برقرار است، شیب تغییرات ضریب تخلیه برحسب عدد رینولدز جریان دوفازی، بیشتر است و با افزایش عدد رینولدز جریان دوفازی و تغییر الگوی جریان از پیستونی به لایه‌ای، این شیب کاهش می‌یابد. جریان‌سنج روزنه‌ای تحت جریان عبوری دوفازی با استفاده از مدل‌های مختلف آشفتگی مورد شبیه‌سازی CFD قرار گرفت. طبق نتایج حاصل، مدل آشفتگی کا-اپسیلون استاندارد نتایج دقیق‌تری نسبت به سایر مدل‌های آشفتگی حاصل نمود. پژوهش حاضر زمینه اندازه‌گیری جریان‌های دوفازی در صنایع نفت و گاز را فراهم می‌آورد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Experimental Study and CFD Simulation of Two-phase Flow Measurement Using Orifice Flow Meter

نویسندگان [English]

  • Mehdi Fadaei 1
  • forough ameli 1
  • seyed hasan Hashemabadi 2
1 School of Chemical, Oil and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
2 School of Chemical, Oil and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, IranInstitute of Fluid Flow Measurement, Iran University of Science and Technology (IUST), Tehran, Iran
چکیده [English]

Due to the importance of measuring multiphase flows in the oil, gas, refining and petrochemical industries, in this study, the feasibility of different two-phase flow measurement methods has been investigated. Two-phase flow loop and measurement equipment including orifice plate flow meter and mercury manometer have been designed according to the international standards. Flow rates of water and air phases in two-phase flow loop have been measured using electromagnetic and turbine flow meters respectively before entering the mixing section and forming two-phase flow. Total mass flow rate of two-phase flow passing through the orifice flow meter has been equal to the total mass flow rate of water plus the total mass flow rate of air that has been measured by electromagnetic and turbine flow meters respectively. The orifice pressure drop for different flow rates of water and air and various volume fractions of air in two-phase flow has been measured. Reynolds number and air volume fraction of two-phase flow were in the range 744 – 10000 and 15 – 40% respectively. Effects of Reynolds number and air volume fraction of two-phase flow on the orifice plate performance have been investigated. For low Reynolds numbers of two-phase flow that the plug flow pattern has been dominant, the slope of changes for discharge coefficient has been more in comparison with upper ranges of Reynolds number where the flow pattern is changed from plug flow to stratified. Orifice plate flow meter has been simulated using CFD approach. The standard K-Epsilon turbulence model has predicted better results than other turbulence models. The present study provides the basis for measuring two-phase flows in the oil and gas industry.
 

کلیدواژه‌ها [English]

  • Experimental Study
  • CFD
  • Metering
  • Two-Phase Flow
  • Orifice Flow Meter

[1]. Ferreira V., “Differential pressure spectral analysis for two-phase flow through an orifice plate,” International journal of pressure vessels and Piping, Vol. 73, No. 1, pp. 19-23, 1997. ##

[2]. Fossa M. and Guglielmini G., “Pressure drop and void fraction profiles during horizontal flow through thin and thick orifices,” Experimental Thermal and Fluid Science, Vol. 26, No. 5, pp. 513-523, 2002. ##

[3]. Oliveira J. L.G., Passos J. C., Verschaeren R. and C. W. M. Geld, van der, “Mass flow rate measurements in gas–liquid flows by means of a venturi or orifice plate coupled to a void fraction sensor,” Experimental Thermal and Fluid Science, Vol. 33, Issue 2, pp. 253-260, 2009. ##

[4]. Bertola, V., “The structure of gas–liquid flow in a horizontal pipe with abrupt area contraction,” Experimental thermal and fluid science, Vol. 28, No. 6, pp. 505-512, 2004. ##

[5]. Jones Jr O. C. and Zuber N., “The interrelation between void fraction fluctuations and flow patterns in two-phase flow,” International Journal of Multiphase Flow, Vol. 2, No. 3, pp. 273-306, 1975. ##

[6]. Roul M. K. and Dash S.K., “Single-phase and two-phase flow through thin and thick orifices in horizontal pipes,” Journal of Fluids Engineering, Vol. 134, No. 9, pp. 091301, 2012. ##

[7]. Alimonti C., Falcone G. and Bello O., “Two-phase flow characteristics in multiple orifice valves,” Experimental Thermal and Fluid Science, Vol. 34, No. 8, pp. 1324-1333, 2010. ##

[8]. Meng, Z., Huang Zh., Wang B., Ji H., Li H. and Yan Y., “Air–water two-phase flow measurement using a Venturi meter and an electrical resistance tomography sensor,” Flow Measurement and Instrumentation, Vol. 21, Issue 3, pp. 268-276, 2010. ##

[9]. Hollingshead C.L., Johnson M. C., Barfuss S. L. and Spall R. E., “Discharge coefficient performance of Venturi, standard concentric orifice plate, V-cone and wedge flow meters at low Reynolds numbers,” Journal of Petroleum Science and Engineering, Vol. 78, Issue 3-4, pp. 559-566, 2011. ##

[10]. Shaban H. and Tavoularis S., “Measurement of gas and liquid flow rates in two-phase pipe flows by the application of machine learning techniques to differential pressure signals,” International Journal of Multiphase Flow, Vol. 67, pp. 106-117, 2014. ##

[11]. Cioncolini A., Scenini F. and Duff J., “Micro-orifice single-phase liquid flow: Pressure drop measurements and prediction,” Experimental Thermal and Fluid Science, Vol. 65, pp. 33-40, 2015. ##

[12]. Al-Qutami T. A., Rosdiazli I., Idris I. and Mohd Azmin I., “Development of soft sensor to estimate multiphase flow rates using neural networks and early stopping,” International Journal on Smart Sensing & Intelligent Systems, Vol. 10, Issue 1, pp. 199-222 2017. ##

[13]. Butterworth D., “A comparison of some void-fraction relationships for co-current gas-liquid flow,” International Journal of Multiphase Flow, Vol. 1, Issue 6, pp. 845-850, 1975. ##

[14]. Woldesemayat M. A., “Comparison of void fraction correlations for two-phase flow in horizontal and upward inclined flows,” Oklahoma State University, 2006. ##

[15]. Chisholm D. and Rooney D., “Pressure drop during steam/water flow through orifices,” Journal of Mechanical Engineering Science, Vol. 16, Issue 5, pp. 353-355, 1974. ##

[16]. Baker O. “Design of pipelines for the simultaneous flow of oil and gas,” in Fall Meeting of the Petroleum Branch of AIME, Society of Petroleum Engineers, 1953. ##

[17]. Kojasoy G., Landis F., Kwame-Mensah P. and Chang C. T., “Two-phase pressure drop in multiple thick-and thin-orifice plates,” Experimental thermal and fluid science, Vol. 15, Issue 4, pp. 347-358, 1997. ##

[18]. Fluent A., “Fluent 12. Theory guide,”  Ansys inc., 2017. ##

[19]. Shah M. S., Joshi J. B., Kalsi A. S., Prasad C. S. R. and Shukla D. S., “Analysis of flow through an orifice meter: CFD simulation,” Chemical Engineering Science, Vol. 71, pp. 300-309, 26 March 2012. ##

[20]. Kalkan O. O., “Implementation of k-epsilon turbulence models in a two dimensional parallel navier-stokes solver on hybrid grids,” 2014. ##