مقایسه اثر کاتیون‌های لانتانیم، استرانسیوم و باریم بر عملکرد غشای پروسکایتی گروه (A-Sr-Co-Fe-(A:La, Ba, Sr در عبور اکسیژن

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشگاه صنعت نفت، پژوهشکده شیمی و پتروشیمی

2 پژوهشگاه صنعت نفت، پژوهشکده گاز

3 دانشگاه صنعتی شریف،دانشکده شیمی

چکیده

غشاهای چگال پروسـکایتی (La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF،
(اBa0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF و (SCF)ا SrCo0.8Fe0.2O3-δ با استفاده از روش تشکیل کمپلکس EDTA با سیترات سنتز شدند. ساختار فازی نمونه‌های پروسکایتی با استفاده از آنالیز پراش اشعه ایکس (XRD) مشخص شده و نتایج جذب اتمی و پلاسمای القایی، تأیید کننده فرمول تئوری پروسکایت‌های تشکیل شده است. با تغییر پارامترهای موثری مثل ضخامت غشا، فشار جزئی اکسیژن در خوراک، دما و نوع مواد به‌کار رفته در ساختار پروسکایت‌ها، شار عبوری اکسیژن اندازه‌گیری و بهینه‌سازی شد. شار اکسیژن در محدوده دمایی بین 1073 تا 1223 کلوین و فشار جزئی اکسیژن بین 1 /0 تا 1 بار در جریان خوراک شامل اکسیژن و نیتروژن اندازه‌گیری شد. در محدوده دمایی بررسی شده، میزان عبور دهی اکسیژن در سه پروسکایت به صورت BSCF>SCF>LSCF بود که محاسبات مربوط به پارامترهای کریستالوگرافی مثل انرژی شبکه و حجم آزاد نیز این نکته را تأئید می‌نماید. تغییرات خطی شار نفوذ اکسیژن با نسبت لگاریتم نپرین فشارهای جزئی اکسیژن در دو سمت غشا ((ln(P2/P1) نشان دهنده آن است که نفوذ توده‌ای، مرحله کنترل کننده سرعت شار نفوذ می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of the Effect Cations La, Sr, and Ba on Oxygen Permeation Through A-Sr-Co-Fe (A: La, Ba, and Sr) Perovskite Membranes

نویسندگان [English]

  • Zahra Taheri 1
  • Ensieh Ganji Babakhani 2
  • Laleh Shirazi 2
  • Khodadad Nazari 1
  • Bahram Ghanbari 3
1 Chemical and Petrochemical Department, Research Institute of Petroleum Industry (RIPI)
2 Gas Department, Research Institute of Petroleum Industry (RIPI)
3 Faculty of Chemistry, Sharif University of Technology
چکیده [English]

Perovskite dense membranes of La0.6Sr0.4Co0.8Fe0.2O3−δ (LSCF), Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) and SrCo0.8Fe0.2O3-δ(SCF) were prepared by complexation method with EDTA-citrate. The perovskite phase structure of the samples was characterized by X-ray diffraction and experimental formula and stoichiometry of the metal ions for the prepared perovskite were confirmed by atomic absorption spectroscopy and inductively coupled plasma. The oxygen permeation flux through the perovskite dense membranes was measured and optimized by change in oxygen partial pressure, temperature, membrane thickness, and the used composition in perovskite structure. The oxygen permeation flux was measured in the range of temperature within 1073–1223 K and the partial pressure of 0.1–1.0 bar. The flux increases in the order of LSCF < SCF< BSCF membranes and the calculations of crystallography parameters such as lattice energy and free volume can confirm this point. The linear changes of oxygen flux versus ln(P2/P1) states that bulk diffusion through the membrane is the rate-limiting step.

کلیدواژه‌ها [English]

  • Dense Membrane
  • Perovskite
  • Bulk Diffusion
  • Oxygen Permeation
  • Oxygen Separation from Air
مراجع

[1] Li S., Jin W., Huang P., Xu N., Shi J., Lin Y.S., Hu M. Z.C. and Payzant E.A., “Comparison of oxygen permeability and stability of perovskite type La0.2A0.8Co0.2Fe0.8O3-δ membranes”, Ind. Eng. Chem. Res, Vol.38, pp.2963-2971,1999.

[2] Burggraaf A.J. and Cot L., Fundamental of Inorganic Membrane Science and Technology, Elsevier, Amsterdam, Langmuir, 1997.

[3] Xu Sh. and Thomson W., “Perovskite-type oxide membranes for the oxidative coupling of methane”, Ceramics processing, Vol. 43, pp.2731-2740, 1997.

[4] Elshof J.E., van Hassel B.A. and Bouwmeester H.J.M., “Activation of methane using solid oxide membranes”, Catal. Today, Vol. 25, pp.397–402,1995.

[5] Balachandran U., Dusek J T., Maiya P S., Ma B., Mieville RL., Kleefish MS. and Udovich CA, “Ceramic membrane reactor for converting methane to syngas”, Catal. Today,Vol .36, pp.265-272, 1997.

[6] Wang H.H., Cong Y. and Yang W.S., “Investigation on the partial oxidation of methane to syngas in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane reactor”, Catal. Today,Vol .82, pp.157-166, 2003.

[7] Tsai CY., Dixon AG., Moser WR. and Ma YH., “Dense perovskite membrane reactors for the partial oxidant of methane to syngas”, AIChE J, Vol. 43, pp.2741-2750,1997.

[8] Wang H.H., Cong Y. and Yang WS., “Partial oxidation of methane to syngas in tubular oxygen-perneable reactor”, Chine. Sci. Bull, Vol. 47, pp.534-537, 2002.

[9] Carter S., Selcuk A., Chater R.J., Kajda J., Kilner J.A. and Steele B.C.H., “Oxygen- transport in selected nonstoichiometric perovskite-structure”, Solid. State. Ionics, Vol. 53, pp.597-600,1992.

[10] Lin Y. S., McLean D. L., Zeng Y., High Temperature Adsorption Process, US Patent 6,059,858, 2000.

[11] Krِger. F.A., The chemistry of in perfect crystals, Holland Pub,1974

[12]. Shao Z., Xing G., Dong H., Yang W. and Lin L., “Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas”, Sep. Pur. Tech, Vol 25. pp.97-116, 2001.

[13] Teraoka Y., Nobunaga T. and Yamazoe N., “Effect of cation substitution on the oxygen semipermeability of perovskite oxides”, Chem. Lett, pp. 503-506,1988.

[14] Mai A., Tietz F. and Stfver D., “Partial reduction and re-oxidation of iron-and cobalt containing perovskites using catalyst characterization measurement”, Solid.State.Ionics, Vol. 173, pp. 35-40, 2004.

[15] Beckel D., Gyger U.P.M., Florey G.A. and Gauckler L.J., “Electrochemical performance of LSCF based thin film cathodes prepared by spray pyrolysis”, Solid. State.Ionics, Vol.178, pp. 407-415,2007.

[16] Teraoka Y., Honbe Y., Ishii J., Furukawa H. and Moriguchi I., “Catalytic effects in oxygen permeation through mixed-conductive LSCF perovskite membranes”, Solid.State.Ionics, Vol. 152-153, pp.681-687, 2002.

[17] Scott S.P, Mantzavinos D, Hartley A., Sahibzada M. and Metcalfe I S., “Reactivity of LSCF perovskites”, Solid. State. Ionics, Vol.152-153, pp.777-781, 2002.

[18] Zenga P., Rana R., Chen Z., Gua H., Shao Z., Diniz J.C. and Liu Sh., “Significant effects of sintering temperature on the performance of La0.6Sr0.4Co0.2Fe0.8O3−δ oxygen selective membranes”, J. Membr. Sci, Vol. 302, pp. 171-179, 2007.

[19] Yang D., Lua H. and Songa H., “Diffusion and permeation through YBa2Cu3O7−x membranes”, J. Membr. Sci, Vol .233, pp. 45-50, 2004.

[20] Zhang K., Ran R., Ge L., Shao Z., Jin W. and Xu N., “Systematic investigation on new SrCo1−yNbyO3− δ ceramic membranes with high oxygen semi-permeability”, J.Memb. Sci, Vol. 323, pp. 436-443, 2008.

[21] Bouwmeester H.J.M. and Burggraaf A.J., “Dense Ceramic Membranes for Oxygen Separation”, pp. 481-553 in: The CRC Handbook of Solid State Electrochemistry. Edited by Gellings, P.J. and Bouwmeester, H.J.M., CRC, BocaRaton, U.S.A, 1997.

[22] Zeng Y., Lin Y. S. and Swartz. S. L., “Perovskite type ceramic membranes: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane”, J. Memb. Sci, Vol. 150, pp. 87-98,1998.

[23] Ganji Babakhani E., Towfighi J. and Nazari K, “Synthesis of BSCFO Ceramics Membrane Using a Simple Complexing Method and Experimental Study of Sintering Parameters”, J. Mater. Sci. Technol., Vol.26, pp. 914-920, 2010.

[24] Mukasyan A.S., Costello C., Sherlock K.P., Lafarga D. and Varma A., “Perovskite membranes by aqueous combustion synthesis:synthesis and properties”, Sep. Pur. Tech, Vol. 25, pp. 117–126, 2001.

[25] Tsai C.Y., Dixon A. G., Moser W.R. and Ma Y.H., “Dense perovskite membrane reactors for partial oxidation of methane to syngas AIChE”, Vol.43, pp. 2741–2750, 1997.

[26] Vente J.F., Haije W.G. and Rak Z.S., “Performance of functional perovskite membranes for oxygen production”, J. Memb. Sci.,Vol.276, pp.178-184, 2006.

[27] Yashima M., Kamioka T., “Neutron diffraction study of the perovskite-type lanthanum cobaltite La0.6Sr0.4Co0.8Fe0.2O3 − δ at 1260 °C and 394 °C”, Solid .State .Ionics,Vol.178, PP.1939–1943,2008.

[28] Mcintosh S., Vente J. F., Haije W.G., Blank D. H.A. and Bouwmeester H.J.M., “Phase stability and oxygen non-stoichiometry of SrCo0.8Fe0.2O3−δ measured by in situ neutron diffraction”, Solid State Ionics, Vol.177, pp.833–842, 2006.

[29] Mogensen M., Lybye D., Bonanos N., Hendriksen P.V. and Poulsen F.W., “Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides”, Solid. State. Ionics , Vol.174 pp.279–286, 2004.

[30] Katsuyoshi K., Hiroshi Y., Hajime H. and Tooru A., “Oxide-ion conductivity of the perovskite-type solid-solution system”, (Ba1_x_ySrxLay)2In2O5+y, , Ind. Eng. Chem. Res, Vol.38, pp.2963-2972,1999.

[31] Huheey J.E., Inorganic Chemistry, Harper & Row, 1983.

[32] Teraoka Y., Zhang H.M., Furukawa S., Yamazoe N., Oxygen permeation through perovskite-type oxides, Chem. Lett 1743-1746,1985.

[33] Tsai C.Y., Dixon A.G. and Ma Y.H., “Dense perovskite La1-xAxFe1-yCoyO3-δ (A=Ba,Sr,Ca) Membrane Synthesis”, Application and Characterization, J. Am. Ceram. Soc, Vol.81, pp.1437-1441,1998.

[34] Xu N., Li S., Jin W., Shi. J. and Lin Y.S., “Experimental and modeling study on tubular dense membranes for oxygen permeation”, AIChE J., Vol.45, pp.2519-2527,1999.

[35] Shannon R.D., “Revised ecective ionic radii and systematic studies of interatomic distances in halides and chalcogenides”, Acta Crystallogr, Vol.32. pp.751-756,1976.

[36] McIntosh S., Vente J. F., Haije. W. G. and Blank D. H.A., “Phase stability and oxygen non-stoichiometry of SrCo 0.8Fe0.2O3−δ measured by in situ neutron diffraction,” Solid State Ionics, Vol.177, No.9-10, pp. 833-842, 2006.

[37] Schmalzried H., Solid State Reactions, 2nd ed., Verlag Chemie, Weinheim-Deerfield Beach-Basel.1981.

[38] Wagner C., Schottky W., Beitrag zur Theorie des Anlaufvorganges Z. Phys. Chem, B11 25-41,1930.

[39] Wang H., Yang W., Tablet C. and Caro J., “Oxygen diffusion in oxide crystals tracing new routes to identify the rate limiting step of oxygen permeation through perovskite membranes”, Diffusion Fundamentals, Vol.2, pp.4610-4615,2005.