اکسیداسیون جزئی بوتان با استفاده از کاتالیست‌های نیکلی بر پایه زئولیت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده شیمی و مهندسی شیمی، دانشگاه صنعتی مالک اشتر

2 پژوهشکده صنایع شیمیایی، سازمان پژوهش‌های علمی و صنعتی ایران

چکیده

ر این مقاله، واکنش اکسیداسیون جزئی بوتان در یک راکتور بستر سیال و در شرایط عملیاتی مختلف انجام شد. برای این منظور، ابتدا این واکنش بدون دخالت کاتالیست در دماها و نسبت‌های گاز به هوای ورودی مختلف بررسی گردید. نتایج نشان داد که میزان تبدیل گاز بوتان در دماهای بالاتر بیشتر است. اما این سیر صعودی در دماهای بالاتر از c° 650 با شیب کمتری ادامه می‌یابد. علاوه بر این، نسبت مولی هوا به سوخت بررسی شد که نسبت بهینه هوا به گاز 6 به 1 تعیین گردید. سپس واکنش اکسیداسیون جزئی بوتان با استفاده از کاتالیست‌های مختلف مورد ارزیابی قرار گرفت. نتایج آزمایش‌های راکتوری نشان داد که کاتالیست Ni/Y دارای فعالیت، گزینش پذیری و پایداری بهتری نسبت به کاتالیست‌های دیگر می‌باشد. با این کاتالیست، درصد تبدیل و گزینش‌پذیری نسبت به هیدروژن به ترتیب 89% و 68% به دست آمد. افزودن فلز مس باعث افزایش پایداری کاتالیست گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Partial Oxidation of Butane Using Zeolite Supported Ni-based Catalysts

نویسندگان [English]

  • Milad Mohiti Asli 1
  • Mahmoud Ziarati 1
  • Nahid Khandan 2
1 Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Lavizan
2 Department of Chemical Industries, Iranian Research Organization for Science & Technology (IROST)
چکیده [English]

In this research, partial oxidation of butane was carried out in a fluidized bed reactor and in various operation conditions. In this way, at first, this reaction was carried out homogenous at various temperatures and fuel to air ratios. Results showed that the conversion was enhanced at higher temperatures. However, rate of increase was low at temperatures higher than 650 °C . Furthermore, optimum ratio of fuel to air was determined 6:1. Also, partial oxidation of butane was carried out using various zeolite supported catalysts. Results indicated that Ni/Y catalyst was the most appropriate catalyst with conversion 89% and Hydrogen selectivity 68%. Finally, Cu was used as promoter which improved stability of catalyst.

کلیدواژه‌ها [English]

  • Partial Oxidation
  • Butane
  • Catalyst
  • Ni/Y
  • Zeolite
مراجع

[1] Ahmed S., and Krumpelt M., “Hydrogen from hydrocarbon fuels for fuel cells”, Int. J. Hydrogen Energy., Vol. 26, pp. 291-301, 2001.

[2]. Seo Y. S., Shirley A., and Kolaczkowski S. T., “Evaluation of thermodynamically favourable operating conditions for production of hydrogen in three different reforming technologies”, J. Power Sources, Vol. 108, pp. 213-215, 2002.

[3]. Kumar S., and Prajapati J. K., “Hydrogen production by partial oxidation of methane: modeling and simulation”, Int. J. Hydrogen Energy, Vol. 34, pp. 6655-6668, 2009.

[4]. Corbo P., and Migliardini F., “Hydrogen production by catalytic partial oxidation of methane and propane on Ni and Pt catalysts”, Int. J. Hydrogen Energy, Vol. 32, pp. 55-66, 2007.

[5]. Nguyen B., and Leclerc C., “Catalytic partial oxidation of methyl acetate as a model to investigate the conversion of methyl esters to hydrogen”, Int. J. Hydrogen Energy, Vol. 33, pp. 1295-1303, 2008.

[6]. Al-Hamamre Z., Voß S., and Trimis D., “Hydrogen production by thermal partial oxidation of hydrocarbon fuels in porous media based reformer”, Int. J. Hydrogen Energy, Vol. 34, pp. 827-832, 2009.

[7]. Simeone M., Salemme L., Scognamiglio D., Allouis C., and Volpicelli G., “Effect of water addition and stoichiometry variations on temperature profiles in an autothermal methane reforming reactor with Ni catalyst”, Int. J. Hydrogen Energy, Vol. 33, pp. 1252-1261, 2008.

[8]. Qi A., Wang S., Ni C., and Wu D., “Autothermal reforming of gasoline on Rh-based monolithic catalysts”, Int. J. Hydrogen Energy, Vol. 32, pp. 981-991, 2007.

[9]. York A., Xiao T., and Green M., “Brief overview of the partial oxidation of methane to synthesis gas”, Topics in Catalysis, Vol. 22, pp. 345-358, 2003.

[10]. Horn R., Williams K. A., Degenstein N. J., Bitsch-Larsen A., Nogare D. D., and Tupy S. A., “Methane catalytic partial oxidation on autothermal Rh and Pt foam catalysts: oxidation and reforming zones”, transport effects, and approach to thermodynamic equilibrium, Journal of Catalysis, Vol. 249, pp. 380-393, 2007.

[11] Chen W. H., Chiu T. W., Hung C. I., and Lin M. L., “Hysteresis and reaction characterization of methane catalytic partial oxidation on rhodium catalyst”, Journal of Power Sources, Vol. 194, pp. 467-477, 2009.

[12]. Liu K., Song Ch., and Subramani V., Hydrogen and Syngas Production and Purification Technologies, American Institute of Chemical Engineers, 2010.

[13]. Recupero V., Pino L., Leonardo R. D., Lagana M., and Maggio G., “Hydrogen generator, via catalytic partial oxidation of methane for fuel cells”, J. Power Sources, Vol. 71, pp. 208-214, 1998.

[14]. Kikuchi R., Iwasa Y., Takeguchi T., and Eguchi K., “Partial oxidation of CH4 and C3H8 over hexaaluminate-type oxides”, Appl. Catal. A. Gen., Vol. 281, pp. 61-67, 2005.

[15]. Hickman D. A., and Schmidt L. D., “Production of syngas by direct catalytic oxidation of methane”, Science, Vol. 259, pp. 343-349, 1992.

[16]. Hickman D. A., and Schmidt L. D., “Synthesis gas formation by direct oxidation of methane over Pt monoliths”, Journal of Catalysis, Vol. 138, pp. 267-275, 1992.

[17]. Lyubovsky M., Roychoudhury S., and Lapierre R., “Catalytic partial oxidation of methane to syngas at elevated pressures”, Catalysis Letters, Vol. 99, pp. 113-118, 2005.

[18]. Mattos L. V., Rodino E., Resasco D. E., Possos F. B., and Noronha F. B., “Partial oxidation and CO2 reforming of methane on Pt/Al2O3, Pt/ZrO2, and Pt/Ce-ZrO2 catalyst, Fuel Process Technol”, Vol. 83, pp. 147-161, 2003.

[19]. Horn R., Williams K. A., Degenstein N. J., and Schmidt L. D., “Syngas by catalytic partial oxidation of methane on rhodium: Mechanistic conclusions from spatially resolved measurements and numerical simulations”, Journal of Catalysis, Vol. 242, pp. 92-96, 2006.

[20]. Perkas N., Zhong Z., Chen L., Besson M., and Gedanken A., “Sonochemically prepared highdispersed Ru/TiO2 mesoporous catalyst for partial oxidation of methane to syngas”, Catalysis Letters, Vol. 103, pp. 9-15, 2005.

[21]. Nakagawa K., Ikenaga N., Teng Y., Kobayashi T., and Suzuki T., “Partial oxidation of methane to synthesis gas over iridium - nickel bimetallic catalysts”, Applied Catalysis. A. General, Vol. 180, pp. 183-191, 1999.

[22]. Suzuki T., Iwanami H., Iwamoto O., and Kitahara T., “Pre-reforming of liquefied petroleum gas on supported ruthenium catalyst”, Int. J. Hydrogen Energy, Vol. 26, pp. 935-940, 2001.

[23]. Avci A. K., Trimm D. L., Aksoylu A. E., and O¨ nsan Z. I., “Ignition characteristics of Pt, Ni and PteNi catalysts used for autothermal fuel processing”, Catal. Lett., Vol. 88, pp. 17-22, 2005.

[24]. Laosiripojana N., Sutthisripok W., Kim-Lohsoontorn P., and Assabumrungrat S., “Reactivity of Ce-ZrO2 (doped with La-, Gd-, Nb-, and Sm-) toward partial oxidation of liquefied petroleum gas: Its application for sequential partial oxidation/steam reforming”, Int. j. hydrogen energy, Vol. 15, pp. 18-22, 2010.