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Surface active agents (surfactants) as the most important chemicals to enhance oil recovery (EOR) can 

reduce interfacial tension between the injected aqueous solution and the oil in a reservoir. Moreover, they 

change wettability of the porous media to release and move the remaining oil trapped in the pores and 

throats towards the well. According to the important roles of the surfactants, it is necessary to predict their 

performance for EOR process. In this research, two data-based mathematical models were developed to 

estimate interfacial tension of the oil, salty water and anionic surfactant system using 598 experimental 

data. To obtain the correlations between the independent variables and the objective function, genetic 

programing has been applied. Squared correlation coefficient (R2) of the models is 0.946 and 0.9387; 

moreover, root-mean-square deviation (RMSD) of the models is 3.4439 mN/m and 3.3261 mN/m 

respectively. Simplicity and acceptable estimation are particular features of the models.
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Introduction
Surface active agents (surfactants) are known as the 

main materials in chemical enhance oil recovery 

(EOR), and their key role is to reduce the amount 

of the trapped residual oil in the pore volumes 

by reducing the interfacial tension (IFT) between 

injected aqueous solution and the reservoir crude 

oil which leads to microscopic displacement of 

oil to the wells [1]. This process is also known as 

surfactant flooding in which a certain concentration 

of surfactant and some soluble salts (such as NaCl, 

CaCl2, etc.) are dissolved in water and injected to 

the reservoir. Residual oil saturation decreases due 

to increasing viscose forces and/or reduction of 

capillary forces on oil droplets. To investigate these 

two important forces, there is a dimensionless 

quantity called “capillary number” that is defined 

as the ratio of viscous forces to capillary forces [1]:
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v, μ and σ are velocity of the injected fluid in 

the pores, viscosity of the displacing phase 

(injection flood) and the IFT between displacing 

and displaced phases (oil reservoir) respectively. 

θ is the angle between the higher-density fluid 

(aqueous solution) and the rock surface and Nc is 

the capillary number. By increasing the capillary 

number, more oil can be produced. The capillary 

number increases with lowering the IFT which 

is implemented by adding surfactant to the 

injected fluid [1].

Surfactants are highly diverse due to their 

molecular structure and consequently, have 

different functions in the process of chemical 

flooding. Hence, it is necessary to evaluate the 

surfactant parameters for selection of the suitable 

surfactants. The modeling techniques are usable 

to estimate and select the best conditions for 

implementing the process.

Several researches and different laboratory 

experiments [2-4] have examined the effects 

of different factors on IFT. Briefly, the variables 

affecting the interfacial tension of the aqueous 

solution-crude-surfactant system can be 

classified as follows (based on the Table 1).

The most famous method for estimating IFT was 

presented by Gibbs [1] which is used highly in 

thermodynamics:
1
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Γi, T and Ci are surfactant surface concentration, 

temperature and surfactant concentration in the 

aqueous solution, respectively. n is surfactant 

number which is 2 or more. By plotting the IFT 

data vs. surfactant concentration, it is observed 

that the IFT value is almost constant at the 

critical micelle concentration (CMC) and larger 

concentrations. An example of this diagram 

is shown in Figure 1. According to Eq. 6, the 

surfactant surface concentration is calculated 

from the slope of such diagram.

Table 1: Variables affecting intermediate level elasticity of aqueous solution - Crude oil - surfactant.

Crude oil parametersAqueous solution param-
eters

 Environmental
parameters

Specific gravitypHTemperature
Acid numberSalinityPressure

Oil compositionSurfactant concentration
Surfactant structure



6Petroleum Research, 2018(July-September), Vol. 28, No. 100

Figure 1: IFT vs. logarithm of surfactant concentration.

In the present study, a new method is proposed 

for estimating IFT for a number of anionic 

surfactants based on genetic programming.

Materials and methods
Collecting dataset
598 experimental data were collected from 

various experimental studies for modelling the 

IFT between crude oil and aqueous solution in 

the presence of anionic surfactants. In order 

to achieve higher accuracy, total dataset were 

divided into two general categories including 

critical concentration data (CMC) less than 1 

mmol/L and the data with CMC greater than 1 

mmol/L and each category was used to generate 

a model. In each category, 70% of the data 

was randomly considered as “training data” to 

construct the model. moreover, the remaining 

data (30% of the total data) were randomly 

divided into two groups with equal number 

including “external validation data” and “test 

data”. The external validation data was used to 

improve the model accuracy and test data was 

applied to evaluate the model estimating ability. 

Genetic Programming Method
Genetic programing (GP) is a well-known 

powerful mathematical-statistical tool which has 

been introduced in the early 1990s and has been 

developed mostly by John Koza. GP is a machine 

learning algorithmic methodology evolving 

evolutionary computer programs to execute 

tasks. In this method, a preliminary population 

of random mathematical functions is generated 

in the form of chromosome-like syntactic tree 

structures to be operated on input data. These 

tree structures are known as “genes” [5]. 

After producing the first population known as 

“parents”, a number of parent functions are 

randomly chosen to form some genes and 

subsequently, primary model will be specified by 

weighted summation of all the genes with a bias 

term.

Then, modification of tree structures will 

be implemented by crossing over the best 

performing trees (cutting some parts of trees and 

replacing the cut parts between themselves). 

This modification is to create a new population 

(children) of functions and this process is often 

known as “generation”. Generation will be 

repeated several times until the last population 

contains functions having enough ability to solve 

the problem, successfully.

Evaluation of Produced Models
For evaluation of new developed models, the 

statistical parameters including the correlation 

coefficient (R2), root mean square error (RMSD) 

and mean absolute error (AAD) were used. These 

parameters are defined as follows:
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yexp., ycal., yexp.ave, and n are the actual values, the 

calculated values, mean of actual values and 

the number of data in the dataset, respectively. 

Smaller values of RMSD and AAD represent 

greater accuracy and the R2 value should be near 

to unity.

Results and Discussion
By implementing genetic programming on input 

data, two relationships were found for the IFT 

between crude oil and saline water containing 

anionic surfactant. The models are as follows:

For CMC less than 1 mmol/L:
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For CMC more than 1 mmol/L:
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The Eq. 6 was developed for 6 alkanes and 9 

anionic surfactants. The statistical parameters of 

this model are presented in Table 2. The variables 

of Eq. 6 are shown in Table 3.

Table 2: The statistical parameters of Eq. 6.

ntrain = 162 ntest = 35
R2

train = 0.9559 R2
test = 0.9106

AADtrain = 2.197 AADtest = 2.701
RMSDtrain = 3.211 mN/m  RMSDtest = 3.7354

mN/m
next-val = 35 ntotal = 232

R2
ext-val = 0.9228 R2

total = 0.946
AADext-val =2.846 AADtotal =2.371 

RMSDext-val = 4.1161 
mN/m

RMSDtotal =3.4439 mN/m

Table 3: The variables of Eq. 6.
Rangevariable

52.980.0006 - IFTIFTO-B-AnionSurf (1)

52.9839.492 - IFT without surfactantIFTO-B

- 0.8743 0.6882Oil specific gravityγo

333.15293.15 - Temperature (K)T
7 – 11.133pHpH

0 - 5405NaCl equivalent salinity (ppm)Seq

0 – 147.58Surfactant concentration (mmol/L)Cs

761.3 - 321.56Surfactant mol. weight (g/mol)Mw
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The Eq. 7 has been produced for 3 anionic 

surfactants and 12 types of oleic phase. The 

statistical parameters and the variables of Eq. 7 

are presented in Table 4 and Table 5, respectively. 

In the current project, by implementing genetic 

programming method, two new models were 

developed to estimate the IFT between oleic 

phase and and saline water in the presence of 

some anionic surfactants. These models have high 

estimation ability and simplicity compared to the 

Gibbs method and are applicable to industries 

and processes associated with IFT of the crude oil/ 

brine/ anionic surfactant systems. Particularly, in 

the process of surfactant flooding, they can be used 

extensively in the chemical EOR. The efficiency of 

these models can save the cost of various laboratory 

operations.

Table 4: The statistical parameters of Eq. 7.

ntrain = 256 ntest = 55
R2

train = 0.9489 R2
test = 0.9143

AADtrain = 2.202 AADtest = 2.680
RMSDtrain = 3.0754 mN/m RMSDtest = 3.9764 mN/m

next-val = 55 ntotal = 366
R2

ext-val = 0.9101 R2
total = 0.9387

AADext-val =2.825 AADtotal =2.368
RMSDext-val = 3.7163 mN/m RMSDtotal =3.3261 mN/m

Table 5: The variables of Eq. 7.

Rangevariable
0.033 to 52.49IFTIFTO-B-AnionSurf (2)

52.49 - 3.235IFT without surfactantIFTO-B

292.65333.15- Temperature (K)T

7 - 6.65pHpH
0 - 80000NaCl equivalent salinity (ppm)Seq

79.984 – 0Surfactant concentration (mmol/L)Cs

309.5 - 265.44Surfactant mol. weight (g/mol)Mw
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