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Single-criterion techniques in which just a single objective is considered cannot offer the perfect 

solution because they cannot take into account the trade-off between conflicting technical and 

economic conditions. In this study, a multi-criteria algorithm was developed based on experimental 

design methods, particle swarm optimization, and fuzzy logic. It was able to solve the optimization 

problem via considering different objectives simultaneously, finding the optimum values of effective 

factors. To evaluate the efficiency of the workflow, a case study was done in which influential 

parameters (water flooding duration, polymer concentration, duration of polymer injection, and 

polymer adsorption) for the design of an enhanced oil recovery operation of polymer flooding 

in a sandstone reservoir were optimized considering technical (cumulative oil production) and 

economic (net present value) objectives. The results were compared to the results of the base-

case scenario as well as a single objective algorithm (particle swarm optimization). Compared 

to the base-case scenario, cumulative oil production increased more than 58% and net present 

value rised from $ 6.9 to 13.1 MM as well. Although the optimum scenario proposed by single-

criterion optimization algorithm based on technical objective produced more oil compared to the 

best solution of the multi-purpose algorithm, a severe reduction was observed in the economic 

objective simultaneously. Finally, the results of this study demonstrate that multi-objective 

algorithms are more applicable to precise and realistic decision-making.
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Table 1: Effective parameters in the polymer injection process.
Level +a(Upper Limit)Level 1Level 0Level -1Level -a(Lower Limit)UnitVariable

306.125246153.5610.875DayWaterflooding Period

0.431250.350.2250.10.01875%wtPolymer concentration

746.256003751503.75DayPolymer Injection Time

4.97542.510.025-Polymer Adsorption

INTRODUCTION

Nowadays, the efficiency of primary and 

secondary mechanisms for producing oil reaches 

up to 50%; in addition, an immense amount of oil 

remains intact in the reservoir which is a suitable 

goal for enhanced oil recovery (EOR) processes 

[1]. EOR methods can be categorized into four 

main groups: thermal, solvent, chemical, and 

other techniques [2]. 

Polymers are the most applicable chemicals 

used in chemical EOR (CEOR) approaches. 

They help the enhancement of oil recovery via 

different mechanisms such as the improvement 

of macroscopic sweep efficiency and plugging of 

high permeable zones [3]. 

Outstanding performance of polymers has 

been proved in a wide range of experimental 

and simulation studies. However, successful 

application of polymer flooding depends on 

the detection, control and optimization of 

influential parameters because the efficacy of 

the process is threated by some restrictions 

such as complexity of the CEOR process, 

harsh conditions of the reservoirs (high 

temperature and high salinity), polymer price, 

and environmental considerations [4]. To 

optimize this process, different methodologies 

have been proposed such as simulation-

based approaches [5], sensitivity of effective 

parameters [6], surrogate-based optimization 

[7], and experimental design [8]. Almost, a 

single objective (e.g. technical indexes) has been 

considered in aforementioned approaches. In 

this case, field projects are implemented in high 

risk atmosphere. Useful optimization of polymer 

injection is done when different objectives are 

considered at the same time. In other words, 

multi-objective optimization methods have 

higher priorities than single-attribute ones. A 

Multi-purpose optimization approach defines as 

a methodology by which the trade-off between 

conflicting objectives can be handled. Moreover, 

limited studies are available in the literature in 

which such approaches have been developed to 

optimize the relevant processes. For example, 

a multi-objective optimization approach based 

on Pareto optimization algorithm has been 

presented by Ekkawong et al [9]. In this paper, 

a hybrid workflow composed of experimental 

design, particle swarm optimization, and fuzzy 

logic methodologies is proposed to optimize 

polymer flooding in terms of technical and 

economic objectives. 

METHODOLOGY
Four input parameters were as follows: the 

period of water flooding, polymer concentration, 

the period of polymer injection, and polymer 

adsorption. The range of influential parameters 

is presented in Table 1. 
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Moreover, cumulative oil production and net 

present value (NPV) were considered as the 

responses of the process. In the first stage of 

the hybrid workflow, statistical modeling was 

done using design of experiments (historical data 

method). For this purpose, 30 runs were designed, 

each of which contained a combination of inputs. 

Thereafter, cumulative oil production and net 

present value were calculated using UTCHEM 

simulator and economic calculation based on $50 

as the price of oil respectively [10]. 

Corresponding responses were then fed into 

Design Expert software and different models were 

fitted to the data, finding the best relationships 

between inputs and outputs in terms of 

mathematical equations to be used as fitness 

functions in the stage of production. In the second 

stage, a multi-objective optimization method was 

employed. To this end, 25 particles in a population 

were placed in the sampling space according to 

their random position and velocity characteristics. 

Then, fitness functions were applied to calculate 

the fitness value of each particle technically and 

economically. These equations cannot be used to 

calculate pbest (the best position of each particle) 

and gbest (the best position of the population) 

because both objectives must be considered 

simultaneously. For this purpose, fuzzy logic was 

coupled with particle swarm optimization by which 

two objective functions are combined to produce 

a unique objective function. First, fuzzification was 

implemented on the fitness functions and fuzzy 

equations were produced according to Eq. 1:
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In which k stands for indexes (1 for technical and 

2 for economic indexes), Fk is the corresponding 

response to kth index, and Fk
max and Fk

min are 

the maximum and minimum values of fitness 

functions, respectively. The ζi as satisfaction 

(unique or Zeta) function was then produced 

when the minimum fuzzy function was taken into 

account:
( ) ( ){ }1 2   ,   i f f i

min µ F µ Fζ =                        (2)

Here, the optimization algorithm tried to 

maximize ζi. The function value reached unity, 

and consequently, fuzzy objective functions 

improved. In such conditions, pbesti was 

calculated for each particle, and gbest of the 

population was calculated accordingly:
{ }   igbest Max pbest=                                       (3)

Next, the position and velocity of the particles 

were updated, and they were placed in the new 

population. The values of pbest and gbest were 

updated if required, and finally the last gbest was 

the solution of the multi-objective problem.

CASE STUDY
It was an undersaturated (initial pressure of 1800 

psi) sandstone reservoir with the dimensions of 

720 ft × 720 ft. The reservoir was a heavy oil type 

with 2 MM bbl of original oil in place. It has passed 

a short period of water flooding in early production 

stage, and consequently polymer flooding has been 

started. Injection pattern was 5-spot. Moreover, 

injection rate was 375 bbl/day, and production 

scenario was constant pressure of 1300 psi. Further 

information can be found in Table 2.

RESULTS AND DISCUSSION
In this paper, CEOR method of polymer 

flooding was optimized using a multi-attribute 

optimization algorithm.
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The first stage of the hybrid workflow was 

statistical modeling to find objective functions. 

The best equations were quadratic types for both 

responses. In addition, the analysis of variance 

(ANOVA) is presented in Table 3. It demonstrates 

that fitted models were significant in confidence 

limit of 99.9 % because prob>F of two models 

were less than 0.0001. Moreover, R2 (R-squared), 

Radj
2 (adjusted R-squared) and Rpred

2 (predicted 

R-squared) were next to the unity. Other 

parameters of ANOVA table were favorable for 

both responses. Therefore, developed second-

order equations could be used as the objective 

functions. 

In the next stage of the workflow, particle swarm 

optimization and fuzzy logic were coupled to 

develop a multi-purpose optimization approach. 

In the first population, 30 particles were placed 

randomly in the sampling area. It should be 

noted that three inputs varied between their 

lower and upper limits (Table 1) while polymer 

concentration as the last factor was set to a 

constant value (value 2) because each polymer 

has its own concentration in a determined 

reservoir. Using objective functions (calculated 

in the previous stage) as well as Equations 1 

to 3, fitness functions of each particle were 

determined, and thereafter, pbest and gbest 

values were calculated. In the next population, 

position of the particles was updated, and new 

values of pbest and gbest were then determined. 

The algorithm progressed until it reached the 

stopping criterion which was 60 populations. The 

trend of satisfaction function is demonstrated in 

Figure 1.

Table 2: General properties of reservoir model.
ValueUnitVariable

15, 15 and 36-Cells in x, y and z directions

32.8-131.2ftGrid-block size in X and Y directions

2.23-5.68ftGrid-block size in Z direction

4%Initial water saturation

200-17000mDPermeability

0.6-End point of water relative permeability

0.93-End point of oil relative permeability

2.5-Power of relative permeability curve for water phase

4-8-Power of relative permeability curve for oil phase

62ºCReservoir temperature

0.48cpWater viscosity in reservoir conditions

17cpOil viscosity in reservoir conditions

Table 3: Analysis of variance for fitted equations.
 Model 2 for net present

value
 Model 1 for cumulative

oil productionParameter

129.82160.02Model F value
< 0.0001< 0.0001Model prob>F
0.99180.9933R-squared
0.98420.9871Adjusted R-squared
0.95790.9659Predicted R-squared
3.772.39CV%

42.07143.175Adequate precision
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Figure 2: The progress trends of the objectives (left: cumulative oil production and right: NPV).

Figure 1. The trend of the variation of satisfactory (Zeta) function.

The parameter of gbest of the 60th population was 

the solution of the problem. Figure 2 shows how 

two responses were optimized while algorithm 

went from population 1 to 60.

The best (optimum) scenario was as follows: 

water flooding should be done for 68 days before 

the start of polymer injection. Then, a polymer 

slug (adsorption of 2) with the concentration of 

0.34 %wt. should be injected for 671 days. In 

this case, cumulative oil production has been 

increased from 426100 (in base-case scenario) to 

675812 bbl while NPV has been improved from 

6.9 to $13.1 MM.

Comparing this multi-objective algorithm with 

a simple-objective particle swarm optimization 

revealed that when just the technical objective 

was considered cumulative oil production 

increased 1825 bbl while NPV decreased $1.6 

MM. Therefore, successful plans of operation 

must take into account all conflicting objectives 

rather than a single goal.

CONCLUSION
According to the results of this paper, the 

following conclusions can be drawn:

1- In this paper, a multi-objective optimization 

methodology was developed which was 

composed of two main stages: the former was the 

statistical modeling to find objective functions 

using design of experiments and the latter was a 

hybrid optimization approach in which fuzzy logic 

and particle swarm algorithm were coupled. 

2- In the modeling stage, historical data (as 

the method of the design of experiments) 

demonstrated favorable results because 

developed R-squared, adjusted R-squared, and 
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predicted R- squared were more than 0.99, 0.98 

and 0.95 respectively.

3- By considering technical and economic 

objectives simultaneously, hybrid workflow 

provided a multi-attribute solution. The optimum 

scenario boosted oil production from 426100 to 

675812 bbl while net present value increased 

$6.2 MM.
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