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INTRODUCTION
Membrane processes have been proposed in 

recent years as efficient methods for separation

and purification. Since the hydrophilicity 

membranes with functional carbon nanotube 

have higher resistance to fouling than hydrophobic 

materials, the increase in hydrophilicity of 

polymer membranes is one of the basic solutions 

for membrane modification. In addition, carbon 

nanotubes have been considered by many 

researchers because of their desirable properties 

such as low mass density, high flexibility and 

effective interaction between carbon nanotube 

bonds and functional groups which have the 

proper properties to improve the performance of 

polymer membranes. Moreover, four intelligent 

systems (MLP, RBF, LSSVM, and ANFIS) and three 

optimization algorithms (GA, PSO, and SA) for 

modeling flux and fouling parameters have been 

used by us. Artificial neural networks have been 

successfully used to prevent membrane fouling 

during microfiltration and ultrafiltration of 

colloidal compounds, proteins as well as urban 

and industrial water treatment [1-5].

PREPARATION OF NANOCOMPOSITE MEMBRANE   

 For manufacturing ultrafiltration membranes by 

phase inversion, a certain amount of nanotubes 

based on previous experiences and studies (0.05, 

0.1, 0.2, 0.3, 0.5 wt.% compared to polymer)[6-7] 

has been distributed for half an hour in normal 

methylpyrrolidone solvent using ultrasonic bath 

and then Polyvinylidene fluoride polymer with a 

15 wt.% (compared to the weight of the polymer) 

is solved in solution. Then cavity-causing polymer 

of polyvinylpyrrolidone in the amount of 1 wt.% 

(compared to the weight of the polymer) for 

pitting is added to the solution. After stirring the 
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solution for 24 hours, it is placed in an oven of 

55 °C for de-bubbling for 6 hours. After passing 

of the solution through a smooth glass substrate 

to reach ambient temperature, membrane layer 

thickness by a video cache with a thickness of 150 

micrometers and at a constant speed was spread 

on the bed and immediately, immersed in the 

coagulation bath water. After about 10 minutes, 

the membrane is removed from the water bath 

and stored in a container which contains distilled 

water.

MODELING
In this paper, modeling using artificial intelligence 

networks has been used to create a predictive 

model of fouling and flux parameters that 

uses 4 smart networks and three optimization 

algorithms.

FOULING PARAMETER MODELING:
In this research, 80% of the modeling data 

for training and 20% for network testing were 

selected randomly.

MLP MODELING:
At this stage, a 3-layer neural network was used 

to simulate . This three-layer neural network 

contains 5 neurons in the input layer and 1 

neuron in the output layer. For both hidden and 

output layers, the tansig activation function was 

used. The objective function was also considered 

as the least mean squared error (LMSE ). To find 

the optimal number of hidden neurons, several 

neural networks have been constructed and 

their function has been investigated. To do this, 

a neuron number of 2 to 30 has been hidden in 

the layer, and finally, after comparing the results 

of the constructed networks, the optimal value 

for the number of hidden layer neurons has been 

15. After the network has been built using the 

data set devoted to training, test data has been 

also provided to the network. The function of 

the MLP network has been constructed, and the 

function is shown in Figures 1 and 2.In addition,  

the related statistical parameters have been 

presented in Table 1.

Figure 1: (a) The cross-sectional graph shows the correlation coefficient between predicted values and actual 
data by the MLP network for training and testing data. (b) The graph shows the relative error for the training and 
testing data for the MLP designed network.

a a
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Figure 2: Comparison between the values predicted by the MLP network with actual data (a) training data, (b) 
test data.

Table 1: Statistical Parameters for the MLP Neural Network.

R2AARDSTDRMSEN
 Training

data
0.9605092.8070250.044962.58752736

Test data0.7755617.1492360.1017965.81553612
Total data0.9176623.8925770.0637413.67104748

The modeling  which has been achieved for other 

networks RBF, LSSVM, and ANFIS  is similar to the 

above table and figures. 

Comparison of Models for fouling Parameters are 

following in Table 2. Modeling which has been 

simulated are similar to fouling parameter.

Comparison of the models with each other for 

finding the flux parameter are shown in Table 3.

Table 2: General results of modeling using different methods.

R2 AARD STD RMSE N

MLP
Train data 0.960509 2.807025 0.04496 2.587527 36
Test data 0.775561 7.149236 0.101796 5.815536 12
All data 0.917662 3.892577 0.063741 3.671047 48

GA-RBF
Train data 1 8.23E-14 1.61E-15 7.87E-14 36
Test data 0.932464 4.171744 0.053156 3.403937 12
All data 0.982956 1.042936 0.028026 1.701968 48

LSSVM
Train data 0.81951 7.365815 0.116697 5.686178 36
Test data 0.92654 5.513205 0.06567 3.229177 12
All data 0.838147 6.902663 0.1056 5.182313 48

Conjugate-ANFIS
Train data 1 2.04E-15 6.26E-17 3.13E-15 36
Test data 0.963835 4.038988 0.048845 3.531359 12
All data 0.983726 1.009747 0.028506 1.76568 48
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Table 3: General outcomes of modeling using different methods.

R2 AARD STD RMSE N

MLP
Train data 1 0.000147 4.15E-06 0.001188 36
Test data 0.929902 6.102074 0.089494 25.19476 12
All data 0.970603 1.525629 0.045198 12.59738 48

GA-RBF
Train data 0.999671 0.303117 0.004457 1.212818 36
Test data 0.991598 1.952475 0.027128 7.287811 12
All data 0.99709 0.715457 0.013693 3.792261 48

LSSVM
Train data 0.998006 0.662018 0.010907 3.024102 36
Test data 0.919262 4.488421 0.070189 21.93118 12
All data 0.973731 1.618618 0.035357 11.274 48

Conju-
gate-
ANFIS

Train data 1 1.9E-14 2.59E-16 6.48E-14 36
Test data 0.981002 2.705384 0.036376 10.98454 12
All data 0.993869 0.676346 0.018683 5.492272 48

FIND OPTIMAL LABORATORY PARAMETERS
In this section, the goal is to obtain optimal values 

for the conditions at which the fouling reaches 

its minimum, while the flux values are high. For 

this, the best models made last season for both 

outputs will be used. Moreover, a combination 

of genetic and particle swarm algorithms is 

working to find optimal values. At first, a random 

population of 300 responses was possible. Then, 

after 50 generations, it converges to optimal 

conditions. The target function is the least 

squared FRR and flux. Finally, convergence to the 

optimal values for the 15% PVDF membrane and 

18% PVDF membrane are shown in Table 4. 

Table 4: Estimated optimal values.
polymer nanoparticle % contact angle porosity BSA Rejection FRR% )Flux(L/m2.hr

15 0.069212835 88.13671097 0.72680354 81.7703366 100.00 252.7
18 0.171222113 79.90790664 0.75124799 98.86853228 63.47 454.2

CONCLUSIONS

   In the present study, PVDF ultrafiltration mem-

branes with two concentrations of 15 and 18% 

have been prepared by phase inversion using 

NMP solvent. In order to improve the hydrophilic 

properties and to reduce the fouling of these 

membranes, various acidic, basic, and amine 

carbon nanotubes with different concentrations 

have been used. The modeling results have been 

performed using four artificial intelligence net-

works. Finally, using optimization algorithms, 

the optimal parameters have been obtained 

according to the goals of the most flux and the 

minimum fouling for both PVDF (15 wt.% and 18 

wt.%) polymers. The overall outcomes of this re-

search can be summarized as follows: For model-

ing flux and fouling parameters, four intelligent 

multi-layer neural network (MLP), radial basic 

function (RBF), least squared support vector 

mechine (LSSVM) and adaptive neuro fuzzy inter-

ference systems (ANFIS) have been used. Errors 

have been calculated and compared with each 

other for each neural network system. According 

to the correlation coefficient obtained for each 

system and the correlation coefficient (> 0.85) is 

a good accuracy for neural networks, it can be 
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concluded that for flux and fouling parameters, 

the best model are GA-RBF and Conjugate-ANFIS. 

In the next section, modeling has been used to 

obtain the optimal values of the best models which 

have been made for both outputs. Afterward, by 

using the combination of genetic algorithm with 

particle swarm optimization algorithim, optimal 

values have been obtained.

Finally, for 15% PVDF polymer, optimum 

nanoparticle content is 0.6% with flux 252.7% 

L/m2h, 100% fouling, 88° contact angle and 

73% porosity; moreover, for 18% PVDF polymer, 

optimum nanoparticle content is 0.17% with flux 

volume 454.2 L/m2h, fouling 63.5%, contact angle 

80° and porosity 75%.
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