

Petroleum Research Petroleum Research, 2019(August-September), Vol. 29, No. 106, 17-20 DOI: 10.22078/pr.2019.3482.2596

Investigation of N-TiO₂ Nanocatalyst Performance in Direct Oxidation of Hydrogen Sulfide to Sulfur

Maryam Daraee*, Alimorad Rashidi and Abbas Jorsaraei talar

Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran

m20.daraee@gmail.com

DOI: 10.22078/pr.2019.3482.2596

Received: October/09/2018

Accepted: February/05/2019

INTRODUCTION

Nowadays, a main problem is air pollution and environmental standard regulations have been hardened so we need to until treat sulfurcontaining gas before transpiration into the atmosphere [1]. The Claus process has been engaged to remove H_2S from sulfur-containing gas such as natural gases or refinery Plants. The Claus process includes two steps: thermally (Equation 1) and catalytic (Equation 2) [2].

$$H_2S + \frac{3}{2}O_2 \xrightarrow{Thermally} SO_2 + H_2O \tag{1}$$

$$SO_2 + 2H_2S \xrightarrow{Catalytic} 2H_2O + \frac{3}{n}S_n$$
 (2)

Selective catalytic oxidation of H_2S has achieved great interest in recent decades, which H_2S can catalytically oxidize to elemental sulfur in one step. Metal-based [3] and carbon-based [4] and hybrid [5] catalysts are used for removing H_2S for direct oxidation process. Also, doping with metallic (Nb, Ag, Pt, W, Mn, Fe, V, Mn, Co,

Ni etc.) and non-metallic (C, N, P, F etc.) has been demonstrated as an effective route in various application such as lithium batteries, gas sensors, photocatalysis and electrochronic devices and adsorption [6]. In previous work, TiO, nanoparticles and TiO,-CNT hybrid nanocatalyst, were synthesized, and its activity in direct oxidation of H₂S to S is investigated [7]. As respects, nitrogen modifies the acido-basic properties or changes the electronic surface state of the support and interaction with the deposited active phase and thus provides a new catalyst with better efficiency [8]. In this work, N doped TiO, was used as a catalyst for direct oxidation H₂S to S for the first time in 200 °C and O₂/H₂S of 0.5. The influence of the nitrogen concentration in N doped TiO, nanocatalyst on the desulfurization activity and sulfur selectivity has been investigated, and the results will be compared with undoped TiO₂.

EXPERIMENTAL PROCEDURE CATALYST PREPARATION

 TiO_2 nanocatalyst: TiO_2 nanoparticles were synthesized according to previous research [7]; moreover, Titanium (IV) isopropoxide precursor was mixed with isopropanol labeled as solution I. Some nitric acid and distilled water were mixed to reach pH=1 and labeled as solution II. Solution II was stirred vigorously and simultaneously added dropwise to the solution I. The resulting colloidal solution was stirred continuously for 2 hours to form a sol. Solution was aged for 24 hours in ethylene glycol bath at 80 °C and exposed to air for 24 hours at ambient temperature to produce a gel. Samples were dried at 110 °C for at least 12 hours in an oven and were calcined under nitrogen gas atmosphere in a furnace at 400 °C for 2 hours.

N doped TiO2: In order to synthesiz N-TiO₂ with 15% nitrogen, at first a certain amount of urea was mixed as nitrogen source with distilled water and dissolved with the aid of the stirrer. Then a certain amount of TiO₂ nanoparticles synthesized is added into distilled water, and urea and is stirred for one hour. The suspensions is sonicated for 30 minutes. The resulting mixture is dried at 80 °C for 24 hours. Then, is calcined in a furnace at 400 °C in atmospheres of nitrogen for 2 hours.

CATALYTIC ACTIVITY TEST

Catalytic activity test is done in a setup of catalytic. The mixture of N_2 and H_2S gas and O_2 gas are used as feed. In addition, 5 g mixture catalyst (1g catalyst and 4g quartz glass with 30-60 mesh) in the reactor was placed, which was fasten by quartz wool from both sides, and it was placed into the tubular reactor. The H_2S and SO_2 concentrations were monitored used

gas chromatograph (Agilent 7890b) model to measure their concentrations from the outlet of reactor. H_2S conversion, sulfur selectivity and sulfur yield is obtained by equation 3 to 5, respectively.

$$H_2S Conversion = \frac{H_2S_{in} - H_2S_{out}}{H_2S_{in}}$$
(3)

$$Sulfur \ selectivity = \frac{H_2 S_{in} - H_2 S_{out} - S_{o_2out}}{H_2 S_{in} - H_2 S_{out}}$$
(4)

Sulfur yield= H₂S Conversion× Sulfur Selectivity (5)

RESULTS AND DISCUSSION

BET surface area measurements are given for TiO_2 and N doped TiO_2 in Table 1 and Figure 1. The surface areas of TiO_2 nanoparticles, N- TiO_2 were 162, $178m^2/g$ respectively. It is anticipated that the interstitial space of TiO_2 increased because of nitrogen groups inserted into TiO_2 network and inhibited from agglomeration of TiO_2 , and surface area N- TiO_2 increased that the N- TiO_2 catalyst has higher surface area than undoped TiO_2 .

Figure 2 shows the EDX analysis for 15% N-doped TiO_2 . Furthermore, content of metal ions and nitrogen doped in the TiO_2 matrices is calculated by this analysis. 15 wt.% of nitrogen doped TiO_2 shows the presence of O, Ti, C and N according to atomic weight stoichiometric, and no unexpected impurities have been observed in catalyst. It indicates that the nitrogen has been inserted into TiO, matrices.

 Table 1: Surface area, pore volume and pore diameter measurements for catalysts.

Catalyst	a _{s, BET} (m²/g)	Pore volume (cm ³ /gr)	d(nm)
TiO ₂ [7]	162	0.14	3
N- TiO ₂	178	0.17	3.4

Figure 1: The N₂ adsorption–desorption isotherms of catalysts: a) TiO₂ [7], b) N-TiO₂.

Figure 2: EDX analysis of N-TiO₂ nanoparticles

CATALYTIC PERFORMANCES

Figure 3 indicates the performance of two catalysts TiO_2 and N- TiO_2 with 15 weight percent of nitrogen for selective oxidation of H_2S to S with optimized temperature 200 °C and $O_2/H_2S=0.5$ for feed stream 4400 ppm and GHSV 17000 h⁻¹. The results show that conversion 15% N- TiO_2 > TiO_2 . Moreover, 15% N- TiO_2 catalyst with 99.2% of H_2S conversion and selectivity of 99.4% have activity higher than TiO_2 . According to our BET results, nitrogen provides higher surface area for 15% N- TiO_2 in comparison with TiO_2 catalyst. Also, According to our EDX results, presence of

nitrogen groups is caused that N-TiO₂ has better performance than undoped TiO₂. Nitrogen species due to their electron density which provides basic centers for H₂S dissociation are the most active sites for H₂S selective oxidation. Also, synergistic effects of TiO₂ and N may be lead to N-TiO₂ better performance than TiO₂. N-TiO₂ exhibits much higher activity in the direct oxidation reaction compare to the undoped TiO₂ due to higher surface area and pore volume. These results show that N-TiO₂ catalyst keeps favorably side reactions during selective oxidation of H₂S at 200 °C and O₂/H₂S ration equal to 0.5.

Figure 3: Catalytic performance of catalysts for direct oxidation reaction in 200 °C and O₂/H₂S ratio of 0.5

REFERENCES

[1]. Wiheeb A. D., Shamsudin I. K., Ahmad M. A., Murat M. N., Kim J. and Othman M. R., *"Present technologies for hydrogen sulfide removal from gaseous mixtures,"* Rev. Chem. Eng., Vol. 29, pp. 449-470, 2013.

[2]. Bhattacharya D., Turton R. and Zitney S. E.,
 "Steady-state simulation and optimization of an integrated gasification combined cycle power plant with CO₂ capture," Ind Eng Chem Res., Vol. 50, pp. 1674-1690, 2011.

[11]. Soriano M. D., Rodríguez-Castellón E., García-González E. and Nieto J. M. L. P., "Catalytic behavior of NaV_6O_{15} bronze for partial oxidation of hydrogen sulfide," Catal. Today., Vol. 238, pp. 62-68, 2014.

[6]. Sun F., Liu J., Chen H., Zhang Z., Qiao W. and Long D., *"Nitrogen-rich mesoporous carbons: highly efficient, regenerable metal-free catalysts for low-temperature oxidation of H*₂*S,"* ACS Catal., Vol. 3, pp. 862-870, 2013.

[16]. Liu C., Zhang R., Wei S., Wang J., Liu Y. and Li M., *"Selective removal of H*₂S from biogas using a regenerable hybrid TiO_2 /zeolite composite," Fuel, Vol. 157, pp. 183-190, 2015.

[6]. Cao Y., Shen L., Hu X., Du Z., Jiang L., "Low temperature desulfurization on Co-doped a-FeOOH: Tailoring the phase composition and

creating the defects," J. Chemical Engineering, Vol. 306, pp. 124-130, 2016.

[26]. SuD S., Zhang J., Frank B., Thomas A., Wang X. and Paraknowitsch J., "Metal-free heterogeneous catalysis for sustainable chemistry," ChemSusChem, Vol. 3, pp. 169-180, 2010. [30]. Daraee M., Baniadam M., Rashidi A. and Maghrebi M., "Synthesis of TiO_2 -CNT hybrid nanocatalyst and its application in direct oxidation of H_2S to S," Chemical Physics, Vol. 511, pp. 7-19, 2018.

20