نیتروژن‌زدایی جذبی از سوخت به‌کمک جاذب زیستی تهیه شده از پوست سبز گردو

نوع مقاله : مقاله پژوهشی

نویسندگان

مهندسی شیمی، دانشگاه ارومیه، ایران

10.22078/pr.2024.5372.3391

چکیده

هدف از این پژوهش مطالعه اثر کربن فعال سنتز شده از پوست سبز گردو بر فعالیت فرآیند جذب سطحی برای حذف ترکیبات نیتروژنی ایندول و کینولین از سوخت مدل است. جاذب سنتز شده به‌کمک روش‌های تعیین مشخصات XRD ، FTIR و BET تحلیل شد. پارامترهای فرآیندی از جمله زمان، دما، غلظت اولیه ترکیب نیتروژنی و دوز جاذب بر فرآیند نیتروژن‌زدایی جذبی بررسی شد. نتایج فرآیند جذب سطحی نشان داد که جاذب کربن فعال سنتز شده از پوست سبز گردو، ppm 200 ایندول و کینولین را در مدت زمان شش h 6، با مقدار جاذب g 05/0 بر mL 10 سوخت نرمال- هپتان حاوی کینولین و ایندول در دمای ºC 25 به‌ترتیب به‌میزان 26/42 و mg.g-1 68/37 حذف می‌کند. برای بررسی سینتیک جذب از مدل‌های سینتیکی شبه مرتبه اول و شبه مرتبه دوم استفاده شد، درحالی‌که از همدما‌های جذب برای ارزیابی داده‌های تعادلی استفاده شد. مشخص شد که جذب ترکیبات نیتروژنی توسط کربن فعال سنتز شده بهترین تناسب با همدمای لانگمویر برای کینولین و ایندول با حداکثر ظرفیت جذب 52/39 و mg.g-1 64/44 دارد. براساس داده‌های تجربی، مدل شبه مرتبه دوم بهترین برازش را برای کینولین و ایندول با رگرسیون خطی (R2) 9989/0 و 9999/0 نشان داد. از مطالعات همدما و سینتیک جذب ثابت شد که کربن فعال سنتز شده از پوست سبز گردو پتانسیل زیادی در حذف ترکیبات نیتروژنی نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Adsorptive Denitrogenation of Fuel with the Help of Biological Adsorbent Prepared from Green Walnut Skin

نویسندگان [English]

  • Amin Alamdari
  • Sadra Rostami
  • Abbas Aghaeinejad Meybodi
Department of Chemical Engineering, Urmia University, Urmia
چکیده [English]

The aim of this research is to study the effect of activated carbon synthesized from green walnut skin on the activity of the adsorption process to remove the nitrogen compounds of indole and quinoline from model fuel. The synthesized adsorbent was analyzed using XRD, FTIR and BET methods. Furthermore, process parameters such as time, temperature, initial concentration of nitrogen compounds and adsorbent dose were investigated on the adsorptive denitrogenation process. The results of the surface adsorption process showed that the activated carbon adsorbent synthesized from the green skin of walnut, 200 ppm of indole and quinoline in a period of six hours, with a catalyst amount of 0.05 g per 10 ml of normal - heptane fuel containing quinoline and indole removes 42.26 and 37.68 mg.g-1 at 25 ºC, respectively. In addition, pseudo-first-order and pseudo-second-order kinetic models were used to investigate adsorption kinetics, while adsorption isotherms were used to evaluate equilibrium data. It was found that the adsorption of nitrogenous compounds by the synthesized activated carbon has the best fit with the Langmuir isotherm for quinoline and indole with the maximum adsorption capacity of 39.52 and 44.64 mg.g-1. Ultimately, based on the experimental data, the pseudo-second order model showed the best fit for quinoline and indole with linear regression (R2) of 0.9989 and 0.9999. From isotherm studies and adsorption kinetics, it was proved that the activated carbon synthesized from the green skin of walnut shows a great potential in removing nitrogenous compounds.

کلیدواژه‌ها [English]

  • Denitrogenation
  • Indole
  • Quinoline
  • Fuel
  • Activated Carbon
  • Walnut Green Skin
[1]. Bhadra, B.N., & Jhung, S.H., (2019). Oxidative desulfurization and denitrogenation of fuels using metal-organic framework-based/-derived catalysts, Applied Catalysis B: Environmental, 259, 118021. DOI:10.1016/j.apcatb.2019.118021##
[2]. Ahmed, I., & Jhung, S.H., (2014). Adsorptive denitrogenation of model fuel with CuCl
loaded metal–organic frameworks (MOFs), Chemical Engineering Journal, 251, 35-42. DOI:10.1016/j.cej.2014.04.044##
[3]. Ahmed, I., Hasan, Z., Abedin Khan, N., & Hwa Jhung, S., (2013). Adsorptive denitrogenation of model fuels with porous metal-organic frameworks (MOFs): Effect of acidity and basicity of MOFs, Applied Catalysis B: Environmental, 129, 123-129. DOI:10.1016/j.apcatb.2012.09.020##
[4]. اکبری، ر.، رحمانی، ف.، مرادی، غ. و شریف نیا، ش.، (1399). تثبیت نانوذرات TiO2 برروی آلومیناسیلیکات طبیعی فرآوری شده جهت تولید هیدروژن: ارزیابی اثر فرآوری شیمیایی پایه و شرایط عملیاتی فرآیند، پژوهش نفت، 30 (111)، 14-30 .doi.org/10.22078/pr.2020.3827.2743. ##
[5]. Shiraishi, Y.,  Tachibana, K., Hirai, T., & Komasawa, I., (2002). Desulfurization and denitrogenation process for light oils based on chemical oxidation followed by liquid− liquid extraction, Industrial & Engineering Chemistry Research, 41(17), 4362-4375. doi:10.1021/ie010618x##
[6]. Ahmed, I., Hasan, Z., Abedin Khan, N., & Hwa Jhung, S., (2013). Adsorptive denitrogenation of model fuels with porous metal-organic framework (MOF) MIL-101 impregnated with phosphotungstic acid: Effect of acid site inclusion, Journal of Hazardous Materials, 2013, 250, 37-44, doi.org/10.1016/j.jhazmat.2013.01.024. ##
[7]. Hernández-Maldonado, A.J. & R.T. Yang, (2004). Denitrogenation of transportation fuels by zeolites at ambient temperature and pressure, Angewandte Chemie, 116(8), 1022-1024. DOI:10.1002/anie.200353162##
[8]. Chen, X., Abdeltawab, A.A., Al-Deyab, S.S., Zhang, J., Yu, L., & Yu, Guangren., (2014). Extractive desulfurization and denitrogenation of fuels using functional acidic ionic liquids, Separation and Purification Technology, 133, 187-193. DOI:10.1016/j.seppur.2014.06.031##
[9]. Ahmed, I. & S.H. Jhung, (2016). Adsorptive desulfurization and denitrogenation using metal-organic frameworks, Journal of Hazardous Materials, 301, 259-276. DOI:10.1016/j.jhazmat.2015.08.045##
[10]. Ishihara, A., Wang, D., Dumeignil, F., Hiroshi Amano, F., Weihua Qian, E., Kabe, T., (2005). Oxidative desulfurization and denitrogenation of a light gas oil using an oxidation/adsorption continuous flow process, Applied Catalysis A: General, 279(1-2), p. 279-287. DOI:10.1016/j.apcata.2004.10.037##
[11]. Kim, J.H., Hyung Kim, J., Ma, X., Zhou, A., & Song, C., (2006). Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: A study on adsorptive selectivity and mechanism, Catalysis Today, 111(1-2), 74-83. DOI: 10.1016/j.cattod.2005.10.017##
[12]. Nowicki, P., J. Kazmierczak, & R. Pietrzak, (2015). Comparison of physicochemical and sorption properties of activated carbons prepared by physical and chemical activation of cherry stones, Powder Technology, 26, 312-319. DOI:10.1016/j.powtec.2014.09.023##
[13]. Attia, A.A., B.S. Girgis, & N.A. Fathy, (2008). Removal of methylene blue by carbons derived from peach stones by H3PO4 activation: batch and column studies, Dyes and Pigments, 76(1), 282-289. DOI:10.1016/j.dyepig.2006.08.039##
[14]. Wu, F.-C., R.-L. Tseng, & R.-S. Juang, (1999). Pore structure and adsorption performance of the activated carbons prepared from plum kernels, Journal of Hazardous Materials, 69(3), 287-302. DOI:10.1016/j.jcis.2005.02.033##
[15]. Angin, D., (2014). Production and characterization of activated carbon from sour cherry stones by zinc chloride, Fuel, 115, 804-811. DOI:10.1016/j.fuel.2013.04.060##
[16]. Jahangiri, M., Shahtaheri, S.J., Adl, J., Rashidi, A., Kakooei, H., Forushani, A.R., Nasiri, G., Ghorbanali, A., Ganjali, M.R., (2012). Preparation of activated carbon from walnut shell and its utilization for manufacturing organic-vapour respirator cartridge, Fresenius Environmental Bulletin, 21(6),1508-1514. ##
[17]. Liu, J., Meng, M., Li, C., Huang, X., & Di, D. (2008). Simultaneous determination of three diarylheptanoids and an α-tetralone derivative in the green walnut husks (Juglans regia L.) by high-performance liquid chromatography with photodiode array detector. Journal of Chromatography A, 1190(1-2), 80-85. ##
 [18]. زندی، ا.، اکبری سنه، ر. و رحمانی، ف.، (1403)، ارزیابی خواص ساختاری-نوری و عملکرد کاتالیستی فتوکامپوزیت اتصال ناهم‌گون BiOI-CuO تعبیه شده در خمیره زئولیتی، نشریه مهندسی منابع معدنی، 9 (4)، 113-99. DOI: 10.30479/jmre.2024.18720.1642. ##
[19]. Misra, P., Badoga, S., Chenna, A., Dalai, A.K., & Adjaye, J., (2017).Denitrogenation and desulfurization of model diesel fuel using functionalized polymer: charge transfer complex formation and adsorption isotherm study. Chemical Engineering Journal, 325, 176-187. doi:10.1016/j.cej.2017.05.033. ##
[20]. Bereyhi, M., Zare-dorabi, R., & Mosavi, S.H., (2020). Microwave-assisted synthesis of CuCl-MIL-47 and application to adsorptive denitrogenation of model fuel: response surface methodology, Chemistry Select, 5, 14583-14591. doi.org/10.1002/slct.202003873. ##
[21]. Seo, P.W., Ahmed, I., & Jhung, S.H., (2016). Adsorptive removal of nitrogen-containing compounds from a model fuel using a metal–organic framework having a free carboxylic acid group,  Chemical Engineering Journal, 299, 236-243. DOI:10.1016/j.cej.2016.04.060. ##
[22]. Kariminejad, F., Ghadimi, S. B., Rahmani, F., Haghighi, M., Sene, R. A., Zazouli, M. A., & Heydari, E. S. (2021). Kinetic and isotherm study of Cr (VI) biosorption from industrial effluents by biomass of dried sludge. Desalination and Water Treatment, 209, 91-104. doi: 10.5004/dwt.2021.26477. ##
[23]. Ahmed, I., & Jhung, S.H., (2015). Effective adsorptive removal of indole from model fuel using a metal-organic framework functionalized with amino groups,  Journal of Hazardous Materials, 283, 544-550. doi:10.1016/j.jhazmat.2014.10.002. ##
[24]. Igwegbe, C.A., Ighalo, J.O., Ghosh, S., Ahmadi, S., Ugonabo, V.I., (2023). Pistachio (Pistacia vera) waste as adsorbent for wastewater treatment: a review, Biomass Conversion and Biorefinery, 13, 8793–8811. doi:10.1007/s13399-021-01739-9. ##
[25]. Ho, Y.S., & McKay, G., (1999). Pseudo-second order model for sorption processes, Process Biochemistry, 34, 451-465. doi.org/10.1016/S0032-9592(98)00112-5. ##
[26]. Uzosike, A.O., Ofudje, E.A., Akiode, O.K., Ikenna, C.V., Adeogun, A.I., Akinyele, J.O., & Idowu, M.A., (2022). Magnetic supported activated carbon obtained from walnut shells for bisphenol‑a uptake from aqueous solution, Applied Water Science, 12(8), 1-16. doi:10.1007/s13201-022-01724-1. ##
[27]. Sofyan, N., Alfaruq, S., Zulfia, A., & Subhan, A. (2018). Characteristics of vanadium doped and bamboo activated carbon coated LiFePO4 and its performance for lithium ion battery cathode. Jurnal Kimia dan Kemasan, 40(1), 9-16. ##
[28]. Ghasemi M., Ghoreyshi, A.A., Younesi, H., & Khoshhal, S., (2015). Synthesis of a high characteristics activated carbon from walnut shell for the removal of Cr (VI) and Fe (II) from aqueous solution: single and binary solutes adsorption, Iranian Journal of Chemical Engineering,  12(4), 28-51. ##
[29]. Davidi, S., Lashanizadegan, A., Sharififard, H., (2019). Walnut shell activated carbon: optimization of synthesis process, characterization and application for Zn (II) removal in batch and continuous process, Materials Research Express, 6, 085621 DOI 10.1088/2053-1591/ab213e. ##
[30]. Li, X., Qiu, J., Hu, Y., Ren, X., He, L., Zhao, N., Ye, T., & Zhao, X., (2020). Characterization and comparison of walnut shells-based activated carbons and their adsorptive properties, Adsorption Science & Technology, 38(9-10), 450-463. https://doi.org/10.1177/0263617420946524##
[31]. Yaman, M., & Demirel, H.M., (2020). Synthesis and characterization of activated carbon from biowaste-walnut shell and application to removal of uranium from waste, Pollution, 6(4), 935-944. DOI:  10.22059/POLL.2020.303546.828. ##
[32]. Xie, R., Wang, H., Chen, Y., & Jiang, W., (2013). Walnut Shell-Based Activated Carbon with Excellent Copper (II) Adsorption and Lower Chromium (VI) Removal Prepared by Acid–Base Modification, 32 (3), 688-696. doi.org/10.1002/ep.11686##
[33]. Yu, L., Zhang, Y., Hudak, B.M., Wallace, D.K., Kim, D.Y., Guiton, B.S., (2016). Simple synthetic route to manganese-containing nanowires with the spinel crystal structure, J. Solid State Chem, 240, 23–29. doi:10.1016/j.jssc.2016.05.012##
[34]. Wang, X., Fan, H., Shen, P., Yao, Y., Chen, Y., Lu, S.,  Teng, B., Liao, X., (2021). Utilizing Ti-MOF crystals’ defects to promote their adsorption and the mechanism investigation, Microporous and Mesoporous Materials, 327, 111402. doi:10.1016/j.micromeso.2021.111402##
[35]. Thaligari, S. K., Gupta, S., Srivastava, V. C., & Prasad, B. (2016). Simultaneous desulfurization and denitrogenation of liquid fuel by nickel-modified granular activated carbon. Energy & Fuels, 30(7), 6161-6168. doi.org/10.1021/acs.energyfuels.6b00579##
[36]. Ahmed, I., Khan, N.B., Yoon, J.W., Chang, J.S., & Jhung, S.H., (2017). Protonated MIL-125-NH2: remarkable adsorbent for the removal of quinoline and indole from liquid fuel, ACS applied materials & interfaces, 9(24), 20938-20946. doi: 10.1021/acsami.7b01899. ##
[37]. Mirzaie, A., Musabeygi, T., & Afzalinia, A., (2017). Sonochemical synthesis of magnetic responsive Fe3O4@ TMU-17-NH2 composite as sorbent for highly efficient ultrasonic-assisted denitrogenation of fossil fuel, Ultrasonics Sonochemistry, 38, 664-671. doi:10.1016/j.ultsonch.2016.08.013. ##
[38]. Tong, M., Jun, J. W., Zhong, C., Jhung, S. H., (2016). Adsorption of nitrogen-containing compounds from model fuel over sulfonated metal–organic framework: contribution of hydrogen-bonding and acid–base interactions in adsorption, The Journal of Physical Chemistry C, 120(1), 407-415. doi:10.1021/acs.jpcc.5b10578. ##
[39]. Foo, K. Y., Lee, L. K., & Hameed, B. H. (2013). Preparation of banana frond activated carbon by microwave induced activation for the removal of boron and total iron from landfill leachate. Chemical Engineering Journal, 223, 604-610. doi.org/10.1016/j.cej.2013.03.009. ##
[40]. Anisuzzaman, S. M., Krishnaiah, D., & Alfred, D. (2018, February). Adsorption potential of a modified activated carbon for the removal of nitrogen containing compounds from model fuel. In AIP Conference Proceedings 1930, 1. AIP Publishing. doi.org/10.1063/1.5022907. ##
[41]. Hiwarkar, A. D., Srivastava, V. C., & Mall, I. D. (2014). Simultaneous adsorption of nitrogenous heterocyclic compounds by granular activated carbon: parameter optimization and multicomponent isotherm modeling. Rsc Advances, 4(75), 39732-39742. doi.org/10.1039/C4RA06395C. ##
[42]. Qu, D., Feng, X., Li, N., Ma, X., Shang, C., & Chen, X. D. (2016). Adsorption of heterocyclic sulfur and nitrogen compounds in liquid hydrocarbons on activated carbons modified by oxidation: capacity, Selectivity and Mechanism. RSC advances, 6(48), 41982-41990. doi.org/10.1039/C6RA06108G. ##
[43]. Hiwarkar, A. D., Srivastava, V. C., & Mall, I. D. (2015). Comparative studies on adsorptive removal of indole by granular activated carbon and bagasse fly ash. Environmental Progress & Sustainable Energy, 34(2), 492-503. doi.org/10.1002/ep.12025. ##
[44]. Thaligari, S. K., Srivastava, V. C., & Prasad, B. (2017). Binary isotherm modeling for simultaneous desulfurization and denitrogenation of model fuel by zinc loaded activated carbon. International Journal of Chemical Reactor Engineering, 15(3), 20150216. doi.org/10.1515/ijcre-2015-0216. ##
[45]. Thaligari, S. K., Gupta, S., Srivastava, V. C., & Prasad, B. (2016). Simultaneous desulfurization and denitrogenation of liquid fuel by nickel-modified granular activated carbon. Energy & Fuels, 30(7), 6161-6168. doi.org/10.1021/acs.energyfuels.6b00579. ##
[46]. Han, X., Lin, H., & Zheng, Y. (2015). Adsorptive denitrogenation and desulfurization of diesel using activated carbons oxidized by (NH4) 2S2O8 under mild conditions. The Canadian Journal of Chemical Engineering, 93(3), 538-548. doi.org/10.1002/cjce.22132. ##
[47]. Arcibar-Orozco, J. A., & Rangel-Mendez, J. R. (2013). Model diesel denitrogenation by modified activated carbon with iron nanoparticles: Sulfur compounds effect. Chemical Engineering Journal, 230, 439-446. doi.org/10.1016/j.cej.2013.06.102. ##
[48]. Rameshraja, D., Srivastava, V. C., Kushwaha, J. P., & Mall, I. D. (2018). Competitive adsorption isotherm modelling of heterocyclic nitrogenous compounds, pyridine and quinoline, onto granular activated carbon and bagasse fly ash. Chemical Papers, 72, 617-628. doi.org/10.1007/s11696-017-0321-6. ##
[49]. Anisuzzaman, S. M., & Kamarulzaman, M. S. (2021). Removal of Nitrogen Containing Compounds From Fuel Using Modified Activated Carbon. Transactions on Science and Technology, 8(1), 38-44. ##
[50]. Abdelhameed, R. M., el-deib, H. R., El-Dars, F. M., Ahmed, H. B., & Emam, H. E. (2018). Applicable strategy for removing liquid fuel nitrogenated contaminants using MIL-53-NH2@ natural fabric composites. Industrial & Engineering Chemistry Research, 57(44), 15054-15065. doi.org/10.1021/acs.iecr.8b03936. ##
[51]. Khan, N. A., Shin, S., & Jhung, S. H. (2020). Cu2O-incorporated MAF-6-derived highly porous carbons for the adsorptive denitrogenation of liquid fuel. Chemical Engineering Journal, 381, 122675. doi.org/10.1016/j.cej.2019.122675. ##
[52]. Ahmed, I., Khan, N. A., & Jhung, S. H. (2017). Adsorptive denitrogenation of model fuel by functionalized UiO-66 with acidic and basic moieties. Chemical Engineering Journal, 321, 40-47. doi.org/10.1016/j.cej.2017.03.093. ##
[53]. Xiao, J., Song, C., Ma, X., & Li, Z. (2012). Effects of aromatics, diesel additives, nitrogen compounds, and moisture on adsorptive desulfurization of diesel fuel over activated carbon. Industrial & Engineering Chemistry Research, 51(8), 3436-3443. doi.org/10.1021/ie202440t. ##
[54]. Ahmed, I., Tong, M., Jun, J. W., Zhong, C., & Jhung, S. H. (2016). Adsorption of nitrogen-containing compounds from model fuel over sulfonated metal–organic framework: contribution of hydrogen-bonding and acid–base interactions in adsorption. The Journal of Physical Chemistry C, 120(1), 407-415. doi.org/10.1021/acs.jpcc.5b10578. ##