[1]. Bhadra, B.N., & Jhung, S.H., (2019). Oxidative desulfurization and denitrogenation of fuels using metal-organic framework-based/-derived catalysts, Applied Catalysis B: Environmental, 259, 118021. DOI:10.1016/j.apcatb.2019.118021##
[2]. Ahmed, I., & Jhung, S.H., (2014). Adsorptive denitrogenation of model fuel with CuCl
loaded metal–organic frameworks (MOFs), Chemical Engineering Journal, 251, 35-42. DOI:10.1016/j.cej.2014.04.044##
[3]. Ahmed, I., Hasan, Z., Abedin Khan, N., & Hwa Jhung, S., (2013). Adsorptive denitrogenation of model fuels with porous metal-organic frameworks (MOFs): Effect of acidity and basicity of MOFs, Applied Catalysis B: Environmental, 129, 123-129. DOI:10.1016/j.apcatb.2012.09.020##
[4]. اکبری، ر.، رحمانی، ف.، مرادی، غ. و شریف نیا، ش.، (1399). تثبیت نانوذرات TiO2 برروی آلومیناسیلیکات طبیعی فرآوری شده جهت تولید هیدروژن: ارزیابی اثر فرآوری شیمیایی پایه و شرایط عملیاتی فرآیند، پژوهش نفت، 30 (111)، 14-30 .doi.org/10.22078/pr.2020.3827.2743. ##
[5]. Shiraishi, Y., Tachibana, K., Hirai, T., & Komasawa, I., (2002). Desulfurization and denitrogenation process for light oils based on chemical oxidation followed by liquid− liquid extraction, Industrial & Engineering Chemistry Research, 41(17), 4362-4375. doi:10.1021/ie010618x##
[6]. Ahmed, I., Hasan, Z., Abedin Khan, N., & Hwa Jhung, S., (2013). Adsorptive denitrogenation of model fuels with porous metal-organic framework (MOF) MIL-101 impregnated with phosphotungstic acid: Effect of acid site inclusion, Journal of Hazardous Materials, 2013, 250, 37-44, doi.org/10.1016/j.jhazmat.2013.01.024. ##
[7]. Hernández-Maldonado, A.J. & R.T. Yang, (2004). Denitrogenation of transportation fuels by zeolites at ambient temperature and pressure, Angewandte Chemie, 116(8), 1022-1024. DOI:10.1002/anie.200353162##
[8]. Chen, X., Abdeltawab, A.A., Al-Deyab, S.S., Zhang, J., Yu, L., & Yu, Guangren., (2014). Extractive desulfurization and denitrogenation of fuels using functional acidic ionic liquids, Separation and Purification Technology, 133, 187-193. DOI:10.1016/j.seppur.2014.06.031##
[9]. Ahmed, I. & S.H. Jhung, (2016). Adsorptive desulfurization and denitrogenation using metal-organic frameworks, Journal of Hazardous Materials, 301, 259-276. DOI:10.1016/j.jhazmat.2015.08.045##
[10]. Ishihara, A., Wang, D., Dumeignil, F., Hiroshi Amano, F., Weihua Qian, E., Kabe, T., (2005). Oxidative desulfurization and denitrogenation of a light gas oil using an oxidation/adsorption continuous flow process, Applied Catalysis A: General, 279(1-2), p. 279-287. DOI:10.1016/j.apcata.2004.10.037##
[11]. Kim, J.H., Hyung Kim, J., Ma, X., Zhou, A., & Song, C., (2006). Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: A study on adsorptive selectivity and mechanism, Catalysis Today, 111(1-2), 74-83. DOI: 10.1016/j.cattod.2005.10.017##
[12]. Nowicki, P., J. Kazmierczak, & R. Pietrzak, (2015). Comparison of physicochemical and sorption properties of activated carbons prepared by physical and chemical activation of cherry stones, Powder Technology, 26, 312-319. DOI:10.1016/j.powtec.2014.09.023##
[13]. Attia, A.A., B.S. Girgis, & N.A. Fathy, (2008). Removal of methylene blue by carbons derived from peach stones by H3PO4 activation: batch and column studies, Dyes and Pigments, 76(1), 282-289. DOI:10.1016/j.dyepig.2006.08.039##
[14]. Wu, F.-C., R.-L. Tseng, & R.-S. Juang, (1999). Pore structure and adsorption performance of the activated carbons prepared from plum kernels, Journal of Hazardous Materials, 69(3), 287-302. DOI:10.1016/j.jcis.2005.02.033##
[15]. Angin, D., (2014). Production and characterization of activated carbon from sour cherry stones by zinc chloride, Fuel, 115, 804-811. DOI:10.1016/j.fuel.2013.04.060##
[16]. Jahangiri, M., Shahtaheri, S.J., Adl, J., Rashidi, A., Kakooei, H., Forushani, A.R., Nasiri, G., Ghorbanali, A., Ganjali, M.R., (2012). Preparation of activated carbon from walnut shell and its utilization for manufacturing organic-vapour respirator cartridge, Fresenius Environmental Bulletin, 21(6),1508-1514. ##
[17]. Liu, J., Meng, M., Li, C., Huang, X., & Di, D. (2008). Simultaneous determination of three diarylheptanoids and an α-tetralone derivative in the green walnut husks (Juglans regia L.) by high-performance liquid chromatography with photodiode array detector. Journal of Chromatography A, 1190(1-2), 80-85. ##
[18]. زندی، ا.، اکبری سنه، ر. و رحمانی، ف.، (1403)، ارزیابی خواص ساختاری-نوری و عملکرد کاتالیستی فتوکامپوزیت اتصال ناهمگون BiOI-CuO تعبیه شده در خمیره زئولیتی، نشریه مهندسی منابع معدنی، 9 (4)، 113-99. DOI: 10.30479/jmre.2024.18720.1642. ##
[19]. Misra, P., Badoga, S., Chenna, A., Dalai, A.K., & Adjaye, J., (2017).Denitrogenation and desulfurization of model diesel fuel using functionalized polymer: charge transfer complex formation and adsorption isotherm study. Chemical Engineering Journal, 325, 176-187. doi:10.1016/j.cej.2017.05.033. ##
[20]. Bereyhi, M., Zare-dorabi, R., & Mosavi, S.H., (2020). Microwave-assisted synthesis of CuCl-MIL-47 and application to adsorptive denitrogenation of model fuel: response surface methodology, Chemistry Select, 5, 14583-14591. doi.org/10.1002/slct.202003873. ##
[21]. Seo, P.W., Ahmed, I., & Jhung, S.H., (2016). Adsorptive removal of nitrogen-containing compounds from a model fuel using a metal–organic framework having a free carboxylic acid group, Chemical Engineering Journal, 299, 236-243. DOI:10.1016/j.cej.2016.04.060. ##
[22]. Kariminejad, F., Ghadimi, S. B., Rahmani, F., Haghighi, M., Sene, R. A., Zazouli, M. A., & Heydari, E. S. (2021). Kinetic and isotherm study of Cr (VI) biosorption from industrial effluents by biomass of dried sludge. Desalination and Water Treatment, 209, 91-104. doi: 10.5004/dwt.2021.26477. ##
[23]. Ahmed, I., & Jhung, S.H., (2015). Effective adsorptive removal of indole from model fuel using a metal-organic framework functionalized with amino groups, Journal of Hazardous Materials, 283, 544-550. doi:10.1016/j.jhazmat.2014.10.002. ##
[24]. Igwegbe, C.A., Ighalo, J.O., Ghosh, S., Ahmadi, S., Ugonabo, V.I., (2023). Pistachio (Pistacia vera) waste as adsorbent for wastewater treatment: a review, Biomass Conversion and Biorefinery, 13, 8793–8811. doi:10.1007/s13399-021-01739-9. ##
[25]. Ho, Y.S., & McKay, G., (1999). Pseudo-second order model for sorption processes, Process Biochemistry, 34, 451-465. doi.org/10.1016/S0032-9592(98)00112-5. ##
[26]. Uzosike, A.O., Ofudje, E.A., Akiode, O.K., Ikenna, C.V., Adeogun, A.I., Akinyele, J.O., & Idowu, M.A., (2022). Magnetic supported activated carbon obtained from walnut shells for bisphenol‑a uptake from aqueous solution, Applied Water Science, 12(8), 1-16. doi:10.1007/s13201-022-01724-1. ##
[27]. Sofyan, N., Alfaruq, S., Zulfia, A., & Subhan, A. (2018). Characteristics of vanadium doped and bamboo activated carbon coated LiFePO4 and its performance for lithium ion battery cathode. Jurnal Kimia dan Kemasan, 40(1), 9-16. ##
[28]. Ghasemi M., Ghoreyshi, A.A., Younesi, H., & Khoshhal, S., (2015). Synthesis of a high characteristics activated carbon from walnut shell for the removal of Cr (VI) and Fe (II) from aqueous solution: single and binary solutes adsorption, Iranian Journal of Chemical Engineering, 12(4), 28-51. ##
[29]. Davidi, S., Lashanizadegan, A., Sharififard, H., (2019). Walnut shell activated carbon: optimization of synthesis process, characterization and application for Zn (II) removal in batch and continuous process, Materials Research Express, 6, 085621 DOI 10.1088/2053-1591/ab213e. ##
[30]. Li, X., Qiu, J., Hu, Y., Ren, X., He, L., Zhao, N., Ye, T., & Zhao, X., (2020). Characterization and comparison of walnut shells-based activated carbons and their adsorptive properties, Adsorption Science & Technology, 38(9-10), 450-463. https://doi.org/10.1177/0263617420946524##
[31]. Yaman, M., & Demirel, H.M., (2020). Synthesis and characterization of activated carbon from biowaste-walnut shell and application to removal of uranium from waste, Pollution, 6(4), 935-944. DOI: 10.22059/POLL.2020.303546.828. ##
[32]. Xie, R., Wang, H., Chen, Y., & Jiang, W., (2013). Walnut Shell-Based Activated Carbon with Excellent Copper (II) Adsorption and Lower Chromium (VI) Removal Prepared by Acid–Base Modification, 32 (3), 688-696. doi.org/10.1002/ep.11686##
[33]. Yu, L., Zhang, Y., Hudak, B.M., Wallace, D.K., Kim, D.Y., Guiton, B.S., (2016). Simple synthetic route to manganese-containing nanowires with the spinel crystal structure, J. Solid State Chem, 240, 23–29. doi:10.1016/j.jssc.2016.05.012##
[34]. Wang, X., Fan, H., Shen, P., Yao, Y., Chen, Y., Lu, S., Teng, B., Liao, X., (2021). Utilizing Ti-MOF crystals’ defects to promote their adsorption and the mechanism investigation, Microporous and Mesoporous Materials, 327, 111402. doi:10.1016/j.micromeso.2021.111402##
[35]. Thaligari, S. K., Gupta, S., Srivastava, V. C., & Prasad, B. (2016). Simultaneous desulfurization and denitrogenation of liquid fuel by nickel-modified granular activated carbon. Energy & Fuels, 30(7), 6161-6168. doi.org/10.1021/acs.energyfuels.6b00579##
[36]. Ahmed, I., Khan, N.B., Yoon, J.W., Chang, J.S., & Jhung, S.H., (2017). Protonated MIL-125-NH2: remarkable adsorbent for the removal of quinoline and indole from liquid fuel, ACS applied materials & interfaces, 9(24), 20938-20946. doi: 10.1021/acsami.7b01899. ##
[37]. Mirzaie, A., Musabeygi, T., & Afzalinia, A., (2017). Sonochemical synthesis of magnetic responsive Fe3O4@ TMU-17-NH2 composite as sorbent for highly efficient ultrasonic-assisted denitrogenation of fossil fuel, Ultrasonics Sonochemistry, 38, 664-671. doi:10.1016/j.ultsonch.2016.08.013. ##
[38]. Tong, M., Jun, J. W., Zhong, C., Jhung, S. H., (2016). Adsorption of nitrogen-containing compounds from model fuel over sulfonated metal–organic framework: contribution of hydrogen-bonding and acid–base interactions in adsorption, The Journal of Physical Chemistry C, 120(1), 407-415. doi:10.1021/acs.jpcc.5b10578. ##
[39]. Foo, K. Y., Lee, L. K., & Hameed, B. H. (2013). Preparation of banana frond activated carbon by microwave induced activation for the removal of boron and total iron from landfill leachate. Chemical Engineering Journal, 223, 604-610. doi.org/10.1016/j.cej.2013.03.009. ##
[40]. Anisuzzaman, S. M., Krishnaiah, D., & Alfred, D. (2018, February). Adsorption potential of a modified activated carbon for the removal of nitrogen containing compounds from model fuel. In AIP Conference Proceedings 1930, 1. AIP Publishing. doi.org/10.1063/1.5022907. ##
[41]. Hiwarkar, A. D., Srivastava, V. C., & Mall, I. D. (2014). Simultaneous adsorption of nitrogenous heterocyclic compounds by granular activated carbon: parameter optimization and multicomponent isotherm modeling. Rsc Advances, 4(75), 39732-39742. doi.org/10.1039/C4RA06395C. ##
[42]. Qu, D., Feng, X., Li, N., Ma, X., Shang, C., & Chen, X. D. (2016). Adsorption of heterocyclic sulfur and nitrogen compounds in liquid hydrocarbons on activated carbons modified by oxidation: capacity, Selectivity and Mechanism. RSC advances, 6(48), 41982-41990. doi.org/10.1039/C6RA06108G. ##
[43]. Hiwarkar, A. D., Srivastava, V. C., & Mall, I. D. (2015). Comparative studies on adsorptive removal of indole by granular activated carbon and bagasse fly ash. Environmental Progress & Sustainable Energy, 34(2), 492-503. doi.org/10.1002/ep.12025. ##
[44]. Thaligari, S. K., Srivastava, V. C., & Prasad, B. (2017). Binary isotherm modeling for simultaneous desulfurization and denitrogenation of model fuel by zinc loaded activated carbon. International Journal of Chemical Reactor Engineering, 15(3), 20150216. doi.org/10.1515/ijcre-2015-0216. ##
[45]. Thaligari, S. K., Gupta, S., Srivastava, V. C., & Prasad, B. (2016). Simultaneous desulfurization and denitrogenation of liquid fuel by nickel-modified granular activated carbon. Energy & Fuels, 30(7), 6161-6168. doi.org/10.1021/acs.energyfuels.6b00579. ##
[46]. Han, X., Lin, H., & Zheng, Y. (2015). Adsorptive denitrogenation and desulfurization of diesel using activated carbons oxidized by (NH4) 2S2O8 under mild conditions. The Canadian Journal of Chemical Engineering, 93(3), 538-548. doi.org/10.1002/cjce.22132. ##
[47]. Arcibar-Orozco, J. A., & Rangel-Mendez, J. R. (2013). Model diesel denitrogenation by modified activated carbon with iron nanoparticles: Sulfur compounds effect. Chemical Engineering Journal, 230, 439-446. doi.org/10.1016/j.cej.2013.06.102. ##
[48]. Rameshraja, D., Srivastava, V. C., Kushwaha, J. P., & Mall, I. D. (2018). Competitive adsorption isotherm modelling of heterocyclic nitrogenous compounds, pyridine and quinoline, onto granular activated carbon and bagasse fly ash. Chemical Papers, 72, 617-628. doi.org/10.1007/s11696-017-0321-6. ##
[49]. Anisuzzaman, S. M., & Kamarulzaman, M. S. (2021). Removal of Nitrogen Containing Compounds From Fuel Using Modified Activated Carbon. Transactions on Science and Technology, 8(1), 38-44. ##
[50]. Abdelhameed, R. M., el-deib, H. R., El-Dars, F. M., Ahmed, H. B., & Emam, H. E. (2018). Applicable strategy for removing liquid fuel nitrogenated contaminants using MIL-53-NH2@ natural fabric composites. Industrial & Engineering Chemistry Research, 57(44), 15054-15065. doi.org/10.1021/acs.iecr.8b03936. ##
[51]. Khan, N. A., Shin, S., & Jhung, S. H. (2020). Cu2O-incorporated MAF-6-derived highly porous carbons for the adsorptive denitrogenation of liquid fuel. Chemical Engineering Journal, 381, 122675. doi.org/10.1016/j.cej.2019.122675. ##
[52]. Ahmed, I., Khan, N. A., & Jhung, S. H. (2017). Adsorptive denitrogenation of model fuel by functionalized UiO-66 with acidic and basic moieties. Chemical Engineering Journal, 321, 40-47. doi.org/10.1016/j.cej.2017.03.093. ##
[53]. Xiao, J., Song, C., Ma, X., & Li, Z. (2012). Effects of aromatics, diesel additives, nitrogen compounds, and moisture on adsorptive desulfurization of diesel fuel over activated carbon. Industrial & Engineering Chemistry Research, 51(8), 3436-3443. doi.org/10.1021/ie202440t. ##
[54]. Ahmed, I., Tong, M., Jun, J. W., Zhong, C., & Jhung, S. H. (2016). Adsorption of nitrogen-containing compounds from model fuel over sulfonated metal–organic framework: contribution of hydrogen-bonding and acid–base interactions in adsorption. The Journal of Physical Chemistry C, 120(1), 407-415. doi.org/10.1021/acs.jpcc.5b10578. ##