تعیین نوع سیال و سنگ‌شناسی یکی از مخازن ناهمگن در شمال غرب خلیج‌فارس با استفاده از روش AVO و جانشینی سیال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین شناسی نفت، پژوهشکده علوم پایه کاربردی، تهران، ایران

2 گروه زمین شناسی، دانشکده زمین‌شناسی، دانشگاه آزاد ارومیه، ارومیه، ایران

10.22078/pr.2024.5389.3399

چکیده

داده‌های لرزه‌ای علاوه‌بر تفسیر کیفی از نظر کمی نیز جزء داده‌های با ارزش یک میدان هیدروکربنی محسوب می‌شوند. تعیین توزیع نوع سیال و سنگ‌شناسی در مقیاس میدان که مخزن آسماری در آن یک سازند ناهمگن محسوب می‌شود بسیار حائز اهمیت است. هدف از این مطالعه، تجزیه و تحلیل تغییرات دامنه بر پایه دورافت و مطالعات فیزیک سنگ به‌منظور شناخت رفتار و خواص مخزن در اثر اشباع شدگی نفت، گاز یا آب است. جهت پیش بینی رفتار مخزن در بخش کربناته بالایی سازند آسماری در میدان مورد مطالعه با اشباع شدگی‌های مختلفی مورد مدل‌سازی قرار گرفته است و نهایتا پس از بررسی و شناخت رفتار لرزه‌ای مخزن و درک نشان‌گرهای اصلی در توصیف سیالات مخزنی، نشان‌گرهای AVO استخراج گردیده است. نتایج چهار روش 1: جانشینی سیال 2: وارون‌سازی مقاومت کشسان 3: نسبت سرعت موج Vp/Vs و 4: ترسیم متقاطع نشان‌گرهای AVO، نشان داد که در بخش هدف به‌صورت همگن سیال گاز تجمع پیدا کرده است. همچنین از نظر سنگ‌شناسی نتایج نسبت Vp/Vs توزیع نوع لیتولوژی آهک، دولومیت و انیدریت را در بخش بالایی سازند آسماری مشخص کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determining the Fluid Type and Lithology of One of the Heterogeneous Reservoirs in the Northwest of the Persian Gulf using the AVO and Fluid Replacement Method

نویسندگان [English]

  • Sepideh Yasami Khyabani 1
  • Sajjad Gharechelou 1
  • Mehran Kalhori 1
  • Ebrahim Elyasi 2
1 Geology Group, Petroleum, Research Institute of Applied Sciences, Tehran, Iran
2 Department of Earth Sciences, Islamic Azad University of Urmia, Iran
چکیده [English]

Seismic data, in addition to qualitative interpretation, are also considered to be valuable numerical data in hydrocarbon fields. It is very important to determine the distribution of the fluid type in the field scale and also to determine the lithology in the Asmari reservoir, which is considered a heterogeneous formation in this field. This study aims to analyze the variation of amplitude versus offset based on depth and rock physics studies to understand the behavior and properties of the reservoir due to oil, gas, or water saturation. To predict the behavior of the reservoir in the upper carbonate part of Asmari, the target field has been modeled with different saturations. Finally, after investigating and understanding the seismic behavior of the reservoir the main indicators in the description of reservoir fluids, AVO attributes have been extracted. For determination of fluid type in the Asmari reservoir four methods were used: 1: fluid replacement method (FRM), 2: elastic impedance inversion, 3: AVO attributes, and 4: Vp/Vs ratio showed that gas fluid has accumulated homogeneously in the target zone. Also, based on the Vp/Vs ratio results, the distribution of three lithology types, limestone, dolomite, and anhydrite, was determined in the upper part of the Asmari Formation.

کلیدواژه‌ها [English]

  • Rock Elastic Properties
  • Fluid Replacement Method (FRM)
  • AVO Attributes
  • Fluids and Lithology Types of Asmari Reservoir
[1]. Smith, G. C., & Gidlow, P. M. (1987). Weighted stacking for rock property estimation and detection of gas. Geophysical Prospecting, 35(9), 993-1014.##
[2]. Ismail, A., Ewida, H. F., Al-Ibiary, M. G., & Zollo, A. (2020). Application of AVO attributes for gas channels identification, West offshore Nile Delta, Egypt. Petroleum Research, 5(2), 112-123, doi.org/10.1016/j.ptlrs.2020.01.003. ##
[3]. Yilmaz, O. (2001). Seismic data analysis: processing, inversion and interpretation of seismic data. Society of Exploration Geophysicists, 463. doi:10.1190/1.9781560801580.fm. ##
[4]. Farfour, M., & Foster, D. (2022). A new AVO fluid indicator using the fluid line: Theory and application. Journal of Applied Geophysics, 204, 104732. doi.org/10.1016/j.jappgeo.2022.104732. ##
[5]. Ostrander, W. J. T. (1984). Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence. Geophysics, 49(10), 1637-1648. Ostrander, W. J. T. (1984). Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence. Geophysics, 49(10), 1637-1648. ##
[6]. Fatti, J. L., Smith, G. C., Vail, P. J., Strauss, P. J., & Levitt, P. R. (1994). Detection of gas in sandstone reservoirs using AVO analysis: A 3-D seismic case history using the Geostack technique. Geophysics, 59(9), 1362-1376. doi.org/10.1190/1.1443695. ##
[7]. Allen, J. L., & Peddy, C. P. (1993). Amplitude variation with offset: Gulf Coast case studies. Society of Exploration Geophysicists. ##
[8]. Castagna, J. P., & Backus, M. M. (Eds.). (1993). Offset-dependent reflectivity—Theory and practice of AVO analysis. Society of Exploration Geophysicists. doi:10.1190/1.9781560802624.fm. ##
[9]. Goodway, B., Chen, T., & Downton, J. (1997). Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters;“λρ”,“μρ”, & “λ/μ fluid stack”, from P and S inversions. In SEG technical program expanded abstracts 1997 (pp. 183-186). Society of Exploration Geophysicists. doi.org/10.1190/1.1885795. ##
[10]. Avseth, P. A. (2000). Combining rock physics and sedimentology for seismic reservoir characterization of North Sea turbidite systems. Stanford University. ##
[11]. Li, Y., Downton, J., & Goodway, B. (2003). Recent applications of AVO to carbonate reservoirs in the Western Canadian Sedimentary Basin. The Leading Edge, 22(7), 670-674. doi.org/10.1190/1.1599694. ##
[12]. Carcione, J. M., & Gangi, A. F. (2000). Gas generation and overpressure: Effects on Seismic Attributes. Geophysics, 65(6), 1769-1779. doi.org/10.1190/1.1444861. ##
[13]. Gassman, M. M. (1951). Rome: Georgia’s” City of Seven Hills”. The Georgia Review, 5(3), 369-377. www.jstor.org/stable/41396126. ##
[14]. Tatham, R. H. (1982). V p V s and lithology. Geophysics, 47(3), 336-344. ##
[15]. Castagna, J. P., & Backus, M. M. (Eds.). (1993). Offset-dependent reflectivity—Theory and practice of AVO analysis. Society of Exploration Geophysicists. doi:10.1190/1.9781560802624.fm. ##
[16]. Assefa, S., McCann, C., & Sothcott, J. (2003). Velocities of compressional and shear waves in limestones. Geophysical Prospecting, 51(1), 1-13. doi.org/10.1046/j.1365-2478.2003.00349.x. ##
[17]. Castagna, J. P., & Smith, S. W. (1994). Comparison of AVO indicators: A modeling study. Geophysics, 59(12), 1849-1855. doi.org/10.1190/1.1443572. ##
[18]. Foster, D. J., & Keys, R. G. (1999). Interpreting AVO responses. In SEG Technical Program Expanded Abstracts 1999 (pp. 748-751). Society of Exploration Geophysicists. doi.org/10.1190/1.1821135. ##
[19]. Castagna, J. P., & Swan, H. W. (1997). Principles of AVO crossplotting. The Leading Edge, 16(4), 337-344. ##
[20]. Fawad, M., Hansen, J. A., & Mondol, N. H. (2020). Seismic-fluid detection-a review. Earth-Science Reviews, 210, 103347. doi.org/10.1016/j.earscirev.2020.103347. ##
[21]. Gharechelou, S., Sohrabi, S., Kadkhodaie, A., Rahimpour-Bonab, H., Honarmand, J., & Montazeri, G. (2016). A seismic-driven 3D model of rock mechanical facies: An example from the Asmari reservoir, SW Iran. Journal of Petroleum Science and Engineering, 146, 983-998.doi.org/10.1016/j.petrol.2016.08.009. ##
[22]. Gharechelou, S., Amini, A., Bohloli, B., Tavakoli, V., Ghahremani, A., & Maleki, A. (2022). An integrated geomechanical model for a heterogeneous carbonate  reservoir in SW Iran, using geomechanical unit concept. Bulletin of Engineering Geology and the Environment, 81(7), 268. ##
 [23]. Abdolahi, A., Chehrazi, A., Kadkhodaie, A., & Seyedali, S. (2023). Identification and modeling of the hydrocarbon-bearing Ghar sand using seismic attributes, wireline logs and core information, a case study on Asmari Formation in Hendijan Field, southwest part of Iran. Modeling Earth Systems and Environment, 9(1), 111-128. ##
[24]. Chopra, S., & Castagna, J. P. (2014). Avo. Society of Exploration Geophysicists. ##
[25]. Russell, B. H. (1988). Introduction to seismic inversion methods (No. 2). SEG Books. ##
[26]. Gassman, M. M. (1951). Rome: Georgia›s City of Seven Hills. The Georgia Review, 5(3), 369-377. ##
[27]. Savic, M., VerWest, B., Masters, R., Sena, A., & Gingrich, D. (2000). Elastic impedance inversion in practice. In SEG International Exposition and Annual Meeting (pp. SEG-2000). SEG. ##
[28]. Mallick, S. (2001). AVO and elastic impedance. The Leading Edge, 20(10), 1094-1104. ##
[29]. Connolly P. (1999). Elastic impedance. The Leading Edge, 8, 438-452. ##
[30]. Whitcombe. DN, (2002). Elastic impedance normalization. Geophysics, 2002, 67, 60-62. ##
[31]. Ross, C. P., & Kinman, D. L. (1996). Nonbright-spot AVO: Two examples. ##
[32]. Pickett, G. R. (1963). Acoustic character logs and their applications in formation evaluation. Journal of Petroleum technology, 15(06), 659-667. ##