ارزیابی جامع آسیب سازند سیالات مجرابند جدید

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی نفت و زمین انرژی، دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)، ایران

10.22078/pr.2024.5402.3404

چکیده

سیالات تکمیل چاه برای تکمیل و تعمیر موفقیت‌آمیز چاه‌های نفت و گاز، به‌ویژه در مخازن چالش برانگیز با دما، فشار بالا و نفوذپذیری پایین ضروری هستند. هدف اصلی این مطالعه به بررسی و ارزیابی آسیب سازند دو سیال مجرابند جدید، یکی پایه فسفاتی و یکی پایه نیتراتی می‌باشد. در این پژوهش دو سیال تکمیل با چگالی بالا مورد استفاده قرار گرفته است. اولین سیال، سیال پایه فسفاتی با چگالی pcf 114 و بعدی سیال پایه نیتراتی است که با افزودن حل‌کننده به چگالی بیشتر از pcf 95 رسیده است. در این مطالعه آزمایش‌های آسیب سازندی هم‌چون تغییر ترشوندگی، تورم رس، سازگاری سیال مجرابند با سیالات مخزن و نفوذ سیال به پلاگ (سیلاب‌زنی) انجام شده است. نتایج تجربی نشان می‌دهد که ارزیابی‌های سازگاری سیالات عدم وجود امولسیون با نفت خام و میعانات را برای همه سیالات نشان می‌دهد، اما در ارزیابی مربوط به سازگاری آب سازند در سیال پایه فسفاتی مقدار رسوبات جزئی مشاهده شد. نتایج آزمایش نفوذ سیال به پلاگ کربناته و ماسه‌سنگی برای سیال پایه فسفاتی نشان می‌دهد که این سیال می‌تواند به‌ترتیب 17/41% و 5/30% و نتایج آزمایش نفوذ سیال به پلاگ کربناته برای سیال پایه نیتراتی نشان می‌دهد که این سیال می‌تواند 33/29% تراوایی سازند را کاهش دهد که این میزان آسیب سازند به‌طور قابل توجهی کمتر از سایر سیالات مانند گل حفاری می‌باشد. همچنین نتایج حاصل از آزمایش تورم رس نشان می‌دهد که میزان تورم رس ناشی از هر دو سیال کمتر از mL 5 در g 2 رس می‌باشد. از این‌رو این سیالات می‌توانند به‌عنوان سیال مجرابند در چاه‌های نفت و گاز استفاده شوند و بهره وری و ایمنی را به ویژه در مخازن چالش برانگیز با دما و فشار بالا و نفوذپذیری کم افزایش دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comprehensive Evaluation of Formation Damage Caused by Novel Packer Fluids

نویسندگان [English]

  • Javad Mahdavi Kalatehno
  • Ehsan Khamehchi
  • Parsa Kazemi Hokmabad
Department of Petroleum and Geoenergy Engineering, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

Well completion fluids are crucial for the successful completion and workover of oil and gas wells, particularly in challenging reservoirs characterized by high temperatures, high pressures, and low permeability. The primary objective of this study is to investigate and evaluate the formation damage inflicted by two novel packer fluids: one phosphate-based and the other nitrate-based. In this research, two high-density completion fluids have been used. The first fluid is the phosphate based fluid with a density of 114 pcf and the next fluid is the nitrate based fluid, which has reached a density greater than 95 pcf by the addition of solvents. This research has conducted various formation damage tests, including assessments of wettability alteration, clay swelling, compatibility of the packer fluid with reservoir fluids, and fluid invasion into the plug (coreflood). The experimental results reveal that compatibility assessments of the fluids indicate no emulsion formation with crude oil and condensates for all fluids tested. However, in the evaluation of formation water compatibility with the phosphate-based fluid, a minor amount of precipitation was observed. Fluid invasion tests into carbonate and sandstone plugs for the phosphate-based fluid demonstrate that this fluid can cause 41.17% and 30.5% reduction in formation permeability, respectively. In contrast, fluid invasion tests into carbonate plugs for the nitrate-based fluid show that this fluid can cause 29.33% reduction in formation permeability, which is significantly less than that caused by other fluids such as drilling mud. Furthermore, the results from the clay swelling tests indicate that the clay swelling caused by both fluids is less than 5 milliliters per 2 grams of clay. Consequently, these fluids can be effectively employed as packer fluids in oil and gas wells, enhancing operational efficiency and safety, particularly in challenging reservoir conditions characterized by high temperatures, high pressures, and low permeability.

کلیدواژه‌ها [English]

  • Completion Fluid
  • Packer Fluid
  • Formation Damage
  • CoreFlood
  • Wettability
  • Clay Swelling
[1]. Lee, J., Shadravan, A., & Young, S. (2012). Rheological properties of invert emulsion drilling fluid under extreme HPHT conditions. SPE/IADC Drilling Conference and Exhibition, doi.org/10.2118/151413-MS.##
[2]. Singh, R., Sharma, R., & Rao, G. R. (2024). Investigation of the effects of ultra-high pressure and temperature on the rheological properties of a novel high-density clear completion fluids using magnesium bromide for applications in HPHT reservoirs. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 10(1), 9. doi.org/10.1007/s40948-023-00724-y. ##
[3]. Civan, F. (2023). Reservoir formation damage: fundamentals, modeling, assessment, and mitigation. Gulf Professional Publishing.
[4]. Porter, K. E. (1989). An overview of formation damage (includes associated paper 20014). Journal of Petroleum Technology, 41(08), 780-786. doi.org/10.2118/19894-PA. ##
[5]. completion fluid. glossary.slb.com/en/terms/c/completion_fluid. ##
[6]. Ezzat, A. (1990). Completion fluids design criteria and current technology weaknesses. SPE International Conference and Exhibition on Formation Damage Control, doi.org/10.2118/19434-MS. ##
[7]. Wang, Q. (2021). Fluid chemistry, drilling and completion. Gulf Professional Publishing. ##
[8]. Caenn, R., Darley, H. C., & Gray, G. R. (2011). Composition and properties of drilling and completion fluids. Gulf professional publishing. ##
[9]. Dubberley, S., & Magill, S. (2020). A technical review of solids free brine-based drilling fluids. In American Association of Drilling Engineers Technical Conference and Exhibition on Fluids, Houston, Texas. ##
[10]. Eaton, B. A., & Smithey, M. (1971). Formation damage from workover and completion fluids. SPE Western Regional Meeting, doi.org/10.2118/3707-MS. ##
[11]. Longeron, D., Argillier, J.-F., & Audibert, A. (1995). An integrated experimental approach for evaluating formation damage due to drilling and completion fluids. SPE European Formation Damage Conference and Exhibition, doi.org/10.2118/30089-MS. ##
[12]. Al Moajil, A., Khaldi, M., Hamzaoui, B., Al-Rustum, A., & Al-Badairy, H. (2017, November). Formation damage assessment of high pH and salinity completion fluids in gas wells. In Abu Dhabi International Petroleum Exhibition and Conference (p. D011S006R006). SPE. doi.org/10.2118/188266-MS. ##
[13]. Hamzaoui, B., & Al Moajil, A. M. (2018). Causes and mitigation of completion fluids-induced formation damage in high temperature gas wells. SPE International Conference and Exhibition on Formation Damage Control, doi.org/10.2118/189495-MS. ##
[14]. Jia, H., Hu, Y. X., Zhao, S. J., & Zhao, J. Z. (2019). The feasibility for potassium-based phosphate brines to serve as high-density solid-free well-completion fluids in high-temperature/high-pressure formations. SPE Journal, 24(05), 2033-2046. doi.org/10.2118/194008-PA. ##
[15]. Zhao, X., Qiu, Z., Sun, B., Liu, S., Xing, X., & Wang, M. (2019). Formation damage mechanisms associated with drilling and completion fluids for deepwater reservoirs. Journal of Petroleum Science and Engineering, 173, 112-121. doi.org/10.1016/j.petrol.2018.09.098. ##
[16]. Khan, R. A., Tariq, Z., Murtaza, M., Kamal, M. S., Mahmoud, M., & Abdulraheem, A. (2022). Ionic liquids as completion fluids to mitigate formation damage. Journal of Petroleum Science and Engineering, 214, 110564. doi.org/10.1016/j.petrol.2022.110564. ##
[17]. Halim, M. C., Hamidi, H., & Houston, K. (2023). A mitigation strategy for productivity impairment in sandstone reservoirs with varying clay mineralogy. Geoenergy Science and Engineering, 231, 212405. ##
[18]. Paköz, U., Ceyhan, A. G., Aktepe, S., Cruden, N., Patey, I., & McLaughlin, R. (2024). Formation damage challenges and solutions in cased hole gravel pack completions in deep offshore unconsolidated laminated sandstone formations in the Sakarya Field. Geoenergy Science and Engineering, 233, 212527. ##
[19]. Moldoveanu, S. C., & David, V. (2016). Selection of the HPLC method in chemical analysis. Elsevier. ##
[20]. Rasaei, M.R., & Ebrahimzadeh,K.,(2024). Water-based drilling mud formulation enhancement from hydroxy to amine functional groups to reduce formation damage caused by mud filtrate in carbonate reservoirs. Petroleum Research, doi.org/10.22078/pr.2024.5325.3372. ##
[21]. Hamidpour, E., Mirzaei-Paiaman, A., Masihi, M., & Harimi, B. (2015). Experimental study of some important factors on nonwetting phase recovery by cocurrent spontaneous imbibition. Journal of Natural Gas Science and Engineering, 27, 1213-1228. doi.org/10.1016/j.jngse.2015.09.070. ##
[22]. Xue, H., Dong, Z., Tian, S., Lu, S., An, C., Zhou, Y., Li, B., & Xin, X. (2021). Characteristics of shale wettability by contact angle and its influencing factors: a case study in Songliao. Frontiers in Earth Science, 9, 736938. doi.org/10.3389/feart.2021.736938. ##
[23]. Bijani, M., Khamehchi, E., & Ezzati, S. (2020). Silica Nanoparticles and pH effect on Sand Production Mechanism due to Smart Water Softening. Lett. Appl. NanoBioSci., 9, 1294-1306. doi.org/10.33263/LIANBS93.12941306. ##
[24]. Rafiei, A., & Khamehchi, E. (2021). Design of smart water composition based on scale minimization and its effect on wettability alteration in the presence of nanoparticles and mineral scales. Journal of Petroleum Science and Engineering, 196, 107832. doi.org/10.1016/j.petrol.2020.107832. ##
[25]. Hansen, G., Hamouda, A., & Denoyel, R. (2000). The effect of pressure on contact angles and wettability in the mica/water/n-decane system and the calcite+ stearic acid/water/n-decane system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 172(1-3), 7-16. doi.org/10.1016/S0927-7757(99)00498-7. ##
[26]. Bijani, M., Khamehchi, E., & Shabani, M. (2022). Comprehensive experimental investigation of the effective parameters on stability of silica nanoparticles during low salinity water flooding with minimum scale deposition into sandstone reservoirs. Scientific Reports, 12(1), 16472. doi.org/10.1038/s41598-022-20595-9. ##
[27]. Gomari, K. R., Denoyel, R., & Hamouda, A. (2006). Wettability of calcite and mica modified by different long-chain fatty acids (C18 acids). Journal of Colloid and Interface Science, 297(2), 470-479. doi.org/10.1016/j.jcis.2005.11.036. ##
[28]. Gomari, K. R., & Hamouda, A. A. (2006). Effect of fatty acids, water composition and pH on the wettability alteration of calcite surface. Journal of Petroleum Science and Engineering, 50(2), 140-150. doi.org/10.1016/j.petrol.2005.10.007. ##
[29]. Ezzati, S., & Khamehchi, E. (2020). Sandstone reservoir wettability alteration due to water softening: Impact of silica nanoparticles on sand production mechanism. Biointerface Research in Applied Chemistry, 5, 6328-6342. doi.org/10.33263/BRIAC105.63286342. ##
[30]. Shakiba, M., Khamehchi, E., Fahimifar, A., & Dabir, B. (2020). A mechanistic study of smart water injection in the presence of nanoparticles for sand production control in unconsolidated sandstone reservoirs. Journal of Molecular Liquids, 319, 114210. doi.org/10.1016/j.molliq.2020.114210. ##
[31]. clay swelling.  https://glossary.slb.com/en/terms/c/clay_swelling. ##
[32]. Fink, J. (2021). Petroleum engineer›s guide to oil field chemicals and fluids. Gulf Professional Publishing. ##
[33]. Anderson, R., Ratcliffe, I., Greenwell, H., Williams, P., Cliffe, S., & Coveney, P. (2010). Clay swelling—a challenge in the oilfield. Earth-Science Reviews, 98(3-4), 201-216. doi.org/10.1016/j.earscirev.2009.11.003. ##
[34]. Hamzaoui, B., & Moajil, A. M. (2018). Scaling and completion fluid pH effect on sandstone formation damage. SPE/IADC Middle East Drilling Technology Conference and Exhibition, doi.org/10.2118/189421-MS. ##
[35]. Hamzaoui, B., Moajil, A. M. A., Yami, I., & Hazzazi, H. (2018). Completion Fluids-Induced Formation Damage in High Temperature Gas Wells: Causes and Mitigation. Offshore Technology Conference, doi.org/10.4043/28666-MS. ##
[36]. Zargar, G., Mohsenatabar Firozjaii, A., Khedri Mirghaed, M., & Moghadasi, J. (2021). Experimental study on preventing formation damage due to clay swelling caused by water based drilling fluid using aluminum ion based clay inhibitor. Journal of Petroleum Science and Technology, 11(2), 13-21. doi.org/10.22078/jpst.2021.4403.1714 . ##
[37]. McPhee, C., Reed, J., & Zubizarreta, I. (2015). Core analysis: a best practice guide. Elsevier. ##
[38]. https://www.slb.com/-/media/files/oilfield-review/defining-formation-damage.ashx. ##
[39]. Kalatehno, J. M., & Khamehchi, E. (2021). A novel packer fluid for completing HP/HT oil and gas wells. Journal of Petroleum Science and Engineering, 203, 108538. doi.org/10.1016/j.petrol.2021.108538. ##
[40]. Faramarzi-Palangar, M., Mirzaei-Paiaman, A., Ghoreishi, S. A., & Ghanbarian, B. (2021). Wettability of carbonate reservoir rocks: a comparative analysis. Applied Sciences, 12(1), 131. doi.org/10.3390/app12010131. ##
[41]. Mwangi, P., Brady, P. V., Radonjic, M., & Thyne, G. (2018). The effect of organic acids on wettability of sandstone and carbonate rocks. Journal of Petroleum Science and Engineering, 165, 428-435. doi.org/10.1016/j.petrol.2018.01.033. ##