بررسی دیاژنز، ژئوشیمی و کیفیت مخزنی سازند فهلیان در یکی از میادین نفتی جنوب غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم، دانشگاه اصفهان، ایران

2 رسوب‌شناسی، دانشکده زمین‌شناسی، دانشکدگان علوم، دانشگاه تهران

3 پردیس توسعه صنایع بالادستی، پژوهشگاه صنعت نفت، تهران، ایران

10.22078/pr.2024.5407.3406

چکیده

سازند فهلیان (کرتاسه آغازین) از مخازن مهم نفتی در بسیاری از میادین حوضه زاگرس نظیر دشت آبادان و خلیج فارس محسوب می‌شود. به منظور بررسی دیاژنز، ژئوشیمی و کیفیت مخزنی این توالی کربناته در یکی از میادین واقع در ناحیه دشت آبادان، نتایج مطالعات زمین‌شناسی-پتروفیزیکی شامل مطالعه پتروگرافی مقاطع نازک میکروسکوپی، آنالیز معمول مغزه (تخلخل- تراوایی)، آنالیز پراش اشعه ایکس، نمودارهای پتروفیزیکی، آنالیز ایزوتوپ کربن-اکسیژن و آنالیز عنصری همراه با مطالعات میکروسکوپ الکترونی و کاتودولومینسانس تلفیق شده است. این سازند تحت تأثیر فرآیندهای دیاژنزی مختلفی شامل میکرایتی‌شدن، آشفتگی‌زیستی، تراکم، سیمانی‌شدن، انحلال، دولومیتی‌شدن و شکستگی قرار گرفته است. سیمانی‌شدن کلسیتی، تراکم و دولومیتی‌شدن فراگیر عوامل اصلی کنترل‌کننده کاهش تخلخل و تراوایی می‌باشند، در حالی که انحلال (به صورت حفره‌ای و قالبی) و شکستگی، کیفیت مخزنی توالی مورد مطالعه را افزایش داده‌اند. تخلخل و تراوایی مغزه در بخش مخزنی سازند فهلیان در توالی مورد مطالعه به ترتیب دارای تغییراتی در محدوده 01/0 تا 5/27% و کمتر از 01/0 تا بیشتر از mD 630 می‌باشد. این تغییرات در تخلخل و تراوایی شدیداً وابسته به فرآیندهای دیاژنزی با پیروی از الگوی تغییرات رخساره‌ای است. بررسی‌های کیفیت مخزنی نیز نشان می‌دهد که دیاژنز تأثیر عمده‌ای به صورت مثبت و منفی در سازند فهلیان داشته و به میزان عمده‌ای توزیع سیستم منافذ را کنترل نموده است. با استفاده از داده‌های ژئوشیمی عنصری و ایزوتوپی اکسیژن و کربن یک سطح مطابق با حداکثر پایین افتادگی سطح نسبی آب دریا شناسایی گردید که می‌توان نتیجه گرفت که دیاژنز جوی تأثیر زیادی در بهبود کیفیت مخزنی توالی زیرین این سطح داشته است. به جهت بررسی کیفیت مخزنی رخساره ها و ایجاد ارتباط بین رخساره‌ها با رده‌های پتروفیزیکی لوسیا و تعیین گونه‌های سنگی، داده‌های تخلخل و تراوایی مربوط به رخساره‌های بخش پایینی (مخزنی) سازند فهلیان بر روی نمودار لوسیا ترسیم و منجر به تفکیک چهار گونه سنگی متفاوت گردید؛ در بین آنها فلوتستون/ باندستون-گرینستون از کیفیت مخزنی بالاتری برخوردار است. در راستای تعیین واحدهای جریانی از دو روش پتروفیزیکی شامل شاخص زون جریانی و شعاع گلوگاه تخلخل در اشباع 35% جیوه استفاده گردید. نتایج نشان داد که شاخص زون جریانی و شعاع گلوگاه تخلخل، عمدتاً ناهمگنی‌های مخازن کربناته را در مقیاس کوچک آشکار می‌کند. بر اساس روش شاخص زون جریانی، یک واحد غیر مخزنی و چهار واحد جریانی و بر اساس روش شعاع گلوگاه تخلخل در اشباع 35% جیوه چهار گونه سنگی و یک گونه غیرمخزنی با توجه به اندازه منافذ شناسایی گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Diagenesis, Geochemistry and Reservoir Quality of the Fahliyan Formation in One of the Oil Fields in Southwestern Iran

نویسندگان [English]

  • Amir Kazemi 1
  • Mَohammad Ali Salehi 1
  • Javad Sobhani 2
  • Javad Honarmand 3
  • Navab Khodaei 3
1 Department of Geology, Faculty of Science, University of Isfahan, Isfahan, Iran
2 School of Geology, College of Science, University of Tehran, Tehran, Iran
3 School of Geology, Upstream Section, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
چکیده [English]

The Fahliyan Formation (Early Cretaceous) is considered to be one of the major oil reservoirs in many fields of the Zagros sub-basins such as the Abadan Plain and the Persian Gulf. In order to investigate the diagenesis, geochemistry and reservoir quality of this carbonate succession in one of the fields located in the Abadan Plain, the results of geological-petrophysical studies including petrographic study of microscopic thin sections, conventional core analysis (porosity-permeability), XRD, petrophysical diagrams, carbon-oxygen isotope and elemental geochemical analysis are combined with SEM and CL microscopy. This formation has been affected by various diagenetic processes, including micritization, bioturbation, compaction, cementation, dissolution, dolomitization, and fracturing. Moreover, calcite cementation, compaction and extensive dolomitization are the main factors that have controlled the decrease of porosity and permeability, while dissolution (in the form of voids and molds) and fracturing have increased the reservoir quality of the studied succession. The core porosity and permeability data in the reservoir part of the Fahliyan Formation range from 0.01 to 27.5% and from less than 0.01 to more than 630 mD. These changes in porosity and permeability are strongly dependent on diagenetic processes that follow the pattern of facies changes. In addition, reservoir quality studies also show that diagenesis has had a major positive and negative impact on the Fahliyan Formation and has largely controlled the distribution of the pore system. Using elemental geochemistry and oxygen and carbon isotopic data, a surface corresponding to the maximum relative sea-level fall was identified. The porosity and permeability data associated with the facies of the lower (reservoir) part of the Fahliyan Formation were plotted on the Lucia diagram resulting in the separation of four different rock types, among which the floatstone/bondstone-greenstone has a higher reservoir quality. Moreover, two petrophysical methods were used to determine flow units, including flow zone index and porosity throat radius at 35% mercury saturation. Based on the FZI method, one non-reservoir unit and four reservoir flow units were identified, and based on the porosity throat radius method at 35% mercury saturation, four rock types and one non-reservoir rock type were identified according to the pore size.

کلیدواژه‌ها [English]

  • Fahliyan Formation
  • Abadan Plain
  • Meteoric Diagenesis
  • Isotope Geochemistry
  • Hydraulic Flow Units
[1]. رحیم‌پور بناب، ح. (1396)، سنگ‌شناسی کربناته با نگرشی بر کیفیت مخزنی، انتشارات دانشگاه تهران، چاپ سوم، 576.##
[2]. Abdollahie Fard, I., Braathen, A., Mokhtari, M., & Alavi, A. (2006). Structural models for the South Khuzestan area based on reflection seismic data. Shahid Beheshti University Tehran. ##
[3]. مطیعی، ه. ( 1372)، چینه‌شناسی زاگرس، زمین‌شناسی ایران، طرح تدوین کتاب، انتشارات سازمان زمین‌شناسی کشور، 536. ##
. [4]صالحی، م. ع.، بیرانوند، ب. و ایمن‌دوست، ع. (1395)، چینه‌شناسی و رخساره‌های سنگی سازندهای فهلیان-گرو در خلیج فارس با هدف کاربرد در مدل‌سازی سیستم‌های هیدروکربنی، فصلنامه پژوهش‌های چینه‌نگاری و رسوب‌شناسی، 32، 64، (109-130). ##
[5]. Alsharhan, A.S. (2014). Petroleum systems in the Middle East. Journal of Geological Society of London, 392: 361-408.
[6]. Christian, L. (1997). Cretaceous subsurface geology of the Middle East region. GeoArabia, 2(3): 239-256. ##
[7]. کاظمی، ا. (1397)، بررسی رخساره‌ها، محیط رسوبی، دیاژنز و کیفیت مخزنی سازند فهلیان در میدان یادآوران، جنوب غرب ایران. پایان نامه کارشناسی ارشد دانشگاه اصفهان. 208. ##
[8]. Dunham, R. J. (1962). Classification of carbonate rocks according to depositional texture. American Association of Petroleum Geologists Memoir, l: l08-121. ##
[9]. Embry, A. F., & Klovan, J. E. (1971). A late Devonian reef tract on northeastern Banks Island, NWT. Bulletin of Canadian petroleum geology, 19(4), 730-781. doi.org/10.35767/gscpgbull.19.4.730. ##
[10]. Flügel, E., & Munnecke, A. (2010). Microfacies of carbonate rocks: analysis, interpretation and application (Vol. 976, p. 2004). Berlin: springer. ##
[11]. Khodaei, N. (2012). Comprehensive geological study of YAD-020 (F15) well cores (Fahliyan Formation), Yadavaran Field. Reaserch Institute of Petroleum Industry, Unpublished Report, 304. ##
[12]. کاظمی، ا.، صالحی، م. ع.، پاکزاد، ح. ر. هنرمند، ج. و خدایی، ن. (1399)، بررسی عوامل کنترل‌کننده کیفیت مخزنی و معرفی واحدهای جریانی سازند فهلیان در یکی از میادین نفتی دشت آبادان، جنوب غرب ایران، پژوهش نفت، دوره 30 (99-1)، 110، 20-4. ##
[13]. Rao, C. P., & Adabi, M. H. (1992). Carbonate minerals, major and minor elements and oxygen and carbon isotopes and their variation with water depth in cool, temperate carbonates, western Tasmania, Australia. Marine Geology, 103(1-3), 249-272. ##
[14]. Morse, J.W. and Mackenzie, F.T. (1990). Geochemistry of Sedimentary Carbonates. Developments in Sedimentology, Elsevier, Amsterdam, 48: 707. ##
[15]. آدابی، م. ح. (1390)، ژئوشیمی رسوبی، انتشارات آرین زمین، 503. ##
[16]. Adabi, M. H. & Asadi Mehmandosti, E. (2008). Microfacies and geochemistry of the Ilam formation in the Tang-E Rashid area, Izeh, S.W. Iran. Journal of Asian Earth Sciences, 33: 267-277. doi.org/10.1016/j.jseaes.2008.01.002. ##
[17]. Adabi, M. H. & Rao, C.P. (1991). Petrographic and geochemical evidence for original aragonitic mineralogy of Upper Jurassic carbonate (Mozduran formation), Sarakhs area, Iran. Sedimentary Geology, 72: 253-267. doi.org/10.1016/0037-0738(91)90014-5. ##
[18]. Pingitore, N. E. (1978). The behavior of Zn 2+ and Mn 2+ during carbonate diagenesis; theory and applications. Journal of Sedimentary Research, 48(3), 799-814. ##
[19]. Marshall, J. D. (1992). Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geological magazine, 129(2), 143-160. ##
[20]. Rao, C.P. (1996). Modern Carbonates, Tropical, Temperate, Polar. Introduction to Sedimentology and Geochemistry, Art of Tasmania, 206. ##
[21]. Adabi, M. H., Salehi, M. A., & Ghabeishavi, A. (2010). Depositional environment, sequence stratigraphy and geochemistry of Lower Cretaceous carbonates (Fahliyan Formation), south-west Iran. Journal of Asian Earth Sciences, 39(3), 148-160. doi.org/10.1016/j.jseaes.2010.03.011. ##
[22]. Cantrell, D. L., & Hagerty, R. M. (1999). Microporosity in arab formation carbonates, Saudi Arabia. GeoArabia, 4(2), 129-154##
[23]. صالحى، م. ع. (1393). بررسی کارآیی روش‌های تعیین گونه‌هاى سنگى سازندهای داریان و سورمه در میدان رشادت، طرح نخبگان وظیفه، شرکت نفت فلات قاره ایران، پژوهش و فناوری، 89. ##
[24]. Lucia, F.J. (1999). Carbonate Reservoir Characterization. Springer, 226. ##
[25]. Pittman, E.D. (1992). Relationship of porosity and permeability to various parameters derived from mercury Injection-capillary pressure curves for sandstone. American Association Petroleum Geologists Bulletin, 72(2): 191-198. ##
[26]. Gunter, G. W., Finneran, J. M., Hartmann, D. J., & Miller, J. D. (1997, October). Early determination of reservoir flow units using an integrated petrophysical method. In SPE Annual Technical Conference and Exhibition? (pp. SPE-38679). SPE. doi.org/10.2118/38679-MS. ##
[27]. Bliefnick, D. M., & Kaldi, J. G. (1996). Pore geometry: control on reservoir properties, Walker Creek Field, Columbia and Lafayette counties, Arkansas. AAPG bulletin, 80(7), 1027-1044. doi.org/10.1306/64ED8C82-1724-11D7-8645000102C1865D. ##
[28]. رمضانی اکبری، ع. ، رحیم‌پوربناب، ح.، کمالی، م. ر.،  موسوی حرمی، ر. و کدخدایی، ع. (1395). میکروفاسیس، محیط رسوبی و چینه‌نگاری سکانسی سازند فهلیان در میادین نفتی دشت آبادان،  پژوهش نفت، شماره 88 (3)، صفحات 81-68. ##
[29]. Tavoosi Iraj, P. Rajabi, M. and Ranjbar-Karami, R. (2023). Integrated petrophysical and heterogeneity assessment of the karstified Fahliyan Formation in the Abadan Plain, Iran. Natural Resources Research, 32(3): 1067-1092. ##
[30]. Ahr, W. M. (2011). Geology of carbonate reservoirs: the identification, description and characterization of hydrocarbon reservoirs in carbonate rocks. John Wiley & Sons. ##
[31]. اسعدی، ع.، هنرمند، ج. ، معلمی ع.، عبداللهی‌فرد، ا.، (1395). تأثیر فرآیندهای دیاژنزی  بر کیفیت مخزنی بخش بالایی سازند سروک در یکی از میادین دشت آبادان، جنوب غرب ایران، نشریه پژوهش‌های چینه‌نگاری و رسوب‌شناسی، 32 ، 1، ( 80-57). ##
[32]. Esrafili-Dizaji, B., & Rahimpour-Bonab, H. (2014). Generation and evolution of oolitic shoal reservoirs in the Permo-Triassic carbonates, the South Pars Field, Iran. Facies, 60(4), 921-940. ##
[33]. Esteban, M., & Taberner, C. (2003). Secondary porosity development during late burial in carbonate reservoirs as a result of mixing and/or cooling of brines. Journal of Geochemical Exploration, 78, 355-359. doi.org/10.1016/S0375-6742(03)00111-0. ##