[1]. Reynolds, A.J., Verheyen, T.V., & Meuleman, E. (2016). Degradation of amine-based solvents. absorption-based post-combustion capture of carbon dioxide, Elsevier, 399−423. doi.org/10.1016/B978-0-08-100514-9.00016-0.##
[2]. Rostami, A., & Tavan, Y. (2019). Pros and cons of implementing new hybrid amine solution for simultaneous removal of mercaptan and acid gas. Chemical Engineering Research and Design, 143: 150 – 159. doi.org/10.1016/j.cherd.2019.01.012. ##
[3]. Bedell, S.A., & Miller, M. (2007). Aqueous amines as reactive solvents for mercaptan removal. Industrial & Engineering Chemistry Research, 46, 3729-3733. doi.org/10.1021/ie0611554. ##
[4]. Zong, L., & Chen C.-C. (2011). Thermodynamic modeling of CO2 and H2S solubilities in aqueous DIPA solution, aqueous sulfolane-DIPA solution, and aqueous sulfolane-MDEA solution with electrolyte NRTL model. Fluid Phase Equilibria, 306, 190-203. doi.org/10.1016/j.fluid.2011.04.007. ##
[5]. Prausnitz, J.M., Lichtenthaler, R.N., & Azevedo, E.G. (1999). Molecular Thermodynamics of Fluid-Phase Equilibria. 3rd Edition, Printice Hall: Upper Saddle River, NJ. ##
[6]. Yang, X., Rees, R.J., Conway, W., Puxty, G., Yang, Q., & Winkler, D.A. (2017). Computational modeling and simulation of CO2 capture by aqueous amine. Chemical Reviews, 117, 9524−959. doi.org/10.1021/acs.chemrev.6b00662. ##
[7]. Jalili, A.H., Shokouhi, M., Maurer, G., & Hosseini-Jenab, M. (2013). Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate, The Journal of Chemical Thermodynamics, 67, 55–62. doi.org/10.1016/j.jct.2013.07.022. ##
[8]. Bieling, V., Kurz, F., Rumpf, B., & Maurer, G. (1995). Simultaneous Solubility of Ammonia and Carbon Dioxide in Aqueous Solutions of Sodium Sulfate in the Temperature Range 313-393 K and Pressures up to 3 MPa, Industrial & Engineering Chemistry Research, 34, 1449. doi.org/10.1021/ie00043a054. ##
[9]. McQuarrie, D.A. (1976). Statistical Mechanics, Harper and Row, New York. ##
[10]. Zhou, S. (2006). Thermodynamic perturbation theory in fluid statistical mechanics, Physical Review E, 74, 031119. doi.org/10.1103/PhysRevE.74.031119. ##
[11]. Wong, C. F., & Hayduk, W. (1990). Correlations for prediction of molecular diffusivities in liquids at infinite dilution. Canadian Journal of Chemical Engineering, 68, 849-859. doi.org/10.1002/cjce.5450680516. ##
[12]. Einstein, A. (1905). On the movement of small particles suspended in a stationary liquid demanded by the molecular kinetic theory of heart. Annalen der physik, 17, 549-560. ##
[13]. Wilke, C.R., Chang, P. (1955). Correlation of diffusion coefficients in dilute solutions AIChE Journal, 1, 264-270. ##
[14]. Scheibel, E.G. (1954). Correspondence. Liquid diffusivities. Viscosity of gases. Industrial & Engineering Chemistry Research, 46, 2007-2008. doi.org/10.1021/ie50537a062. ##
[15]. Arnold, J. H. (1930). Studies in diffusion. II. A kinetic theory of diffusion in liquid systems, Journal of The American Chemical Society, 52, 3937-3955. doi.org/10.1021/ja01373a025. ##
[16]. Schmidt T. (1989) Mass transfer by diffusion. In AOSTRA Handbook on oil sands, Bitumens and heavy oils; L. G. Hepler, C. His, Eds.; Alberta oil sands technology & research authority (AOSTRA): Edmonton, Alberta, Canada, Chapter 12. ##
[17]. Grogan, A.T., & Pinczewski W.V. (1987). The Role of Molecular Diffusion Processes in Tertiary CO2 Flooding, Journal of Petroleum Technology, 39 (5), 591-602. doi.org/10.2118/12706-PA. ##
[18]. Renner T.A. (1988). Measurement and Correlation of Diffusion Coefficients for CO2 and Rich-Gas Applications, SPE Reservoir Engineering 3 (2), 517-523. doi.org/10.2118/15391-PA. ##
[19]. Camper, D., Becker, C., Koval, C., & Noble. R. (2006). Diffusion and Solubility Measurements in Room Temperature Ionic Liquids, Industrial & Engineering Chemistry Research, 45, 445-450. doi.org/10.1021/ie0506668. ##
[20]. Yokozeki, A. (2002). Time-dependent behavior of gas absorption in lubricant oil. International Journal of Refrigeration, 25, 695-704. doi.org/10.1016/S0140-7007(01)00066-4. ##
[21]. Hou, Y., & Baltus, R. (2007). Experimental measurement of the solubility and diffusivity of CO2 in room-temperature ionic liquids using a transient thin-liquid-film method, Industrial & Engineering Chemistry Research, 46, 8166-8175. doi.org/10.1021/ie070501u. ##
[22]. Morgan, D., Ferguson, L., & Scovazzo, P. (2005). Diffusivities of gases in room-temperature ionic liquids: data and correlations obtained using a lag-time technique. Industrial & Engineering Chemistry Research, 44, 4815-4823. doi.org/10.1021/ie048825v. ##
[23]. Sheikha, H., Pooladi-Darvish, M., & Mehrotra, A.K. (2005). Development of graphical methods for estimating the diffusivity coefficient of gases in bitumen from pressure-decay data. Energy & Fuels, 19, 2041-2049. doi.org/10.1021/ef050057c. ##
[24]. Sheikha, H., Mehrotra, A.K., & Pooladi-Darvish, M. (2006). An inverse solution methodology for estimating the diffusion coefficient of gases in Athabasca bitumen from pressure-decay data. Journal of Petroleum Science and Engineering, 53, 189-202. doi.org/10.1016/j.petrol.2006.06.003. ##
[25]. Yang, C., & Gu, Y.A. (2003). SPE Annual Technical Conference and Exhibition, Denver, Co, October 5-8, SPE Paper No. 84202.
[26]. Woessner, D.E., Snowden, B.S., George, R.A., & Melrose, J.C. (1969). Dense gas diffusion coefficients for the methane-propane system. Industrial & Engineering Chemistry Fundamentals, 8 (4), 779-786. doi.org/10.1021/i160032a029. ##
[27]. Fu, B.C.H., & Phillips, C. R. (1979). New technique for determination of diffusivities of volatile hydrocarbons in semi-solid bitumen. Fuel 58, 557-560. doi.org/10.1016/0016-2361(79)90002-4. ##
[28]. Yu, C.S.L. (1984). The time-dependent diffusion of CO2 in normal-hexadecane at elevated Pressures, M.Sc. Thesis, University of Calgary, Calgary, Canada. ##
[29]. Leu, A.-D., Robinson, D.B., Chung, S.Y.-K., & Chen, C.-J. (1992). The equilibrium phase properties of the propane-methanol and n-butane-methanol binary systems. The Canadian Journal of Chemical Engineering, 70, 330-334. doi.org/10.1002/cjce.5450700217. ##
[30]. Galivel-Solastiouk, F., Laugier, S., & Richon, D. (1986). Vapor-liquid equilibrium data for the propane-methanol and propane-methanol-carbon dioxide system. Fluid Phase Equilibria, 28, 73-85. doi.org/10.1016/0378-3812(86)85069-5. ##
[31]. Horizoe, H., Tanimoto, T., Yamamoto, I., & Kano, Y., (1993) Phase equilibrium study for separation of ethanol-water solution using subcritical and supercritical hydrocarbon solvent extraction. Fluid Phase Equilibria, 84: 297-320. doi.org/10.1016/0378-3812(93)85129-A. ##
[32]. Zabaloy, M.S., Mabe, G.D.B., Bottini, S.B., & Brignole, E.A. (1993). Isothermal vapor-liquid equilibrium data for the binaries propane-2-propanol and propylene-2-propanol. Journal of Chemical & Engineering Data, 38,40-43. doi.org/10.1021/je00009a009. ##
[33]. Gros, H.P., Zabaloy, M.S., & Brignole, E.A. (1996). High-pressure vapor-liquid equilibria propane+2-butanol, propylene+2-butanol, and propane+2-propanol. Journal of Chemical & Engineering Data, 41, 335-338. ##
doi.org/10.1021/je9502511. ##
[34]. Jou, F.-Y., Otto, F.D., & Matter, A.E. (1993). The solubility of propane in 1,2-ethanediol at elevated pressure. The Journal of Chemical Thermodynamics, 25, 37-40, doi.org/10.1006/jcht.1993.1004. ##
[35]. Jalili, A.H., Rahmati-Rostami, M., Ghotbi, C., & Hosseini-Jenab, M., Ahmadi A.N. (2009) Solubility of H2S in Ionic Liquids [bmim][PF6], [bmim][BF4], and [bmim][Tf2N]. Journal of Chemical & Engineering Data, 54, 1844 – 1849. doi.org/10.1021/je8009495. ##
[36]. Zoghi, A.T., Shokouhi, M., Naderi, F., Abbasghorbani, M., Fatehi, A., Pouladi, B., & Adhami, M.A. (2022). Investigation of Aqueous Diethanolamine Performance in Prediction of Hydrogen Sulfide and Carbonyl sulfide Removal from Liquefied Propane. Journal of Solution Chemistry, 51, 84 - 96. doi.org/10.1007/s10953-021-01131-1. ##
[37]. NIST Chemistry Webbook, (Natural Institute Standard Technology, Gaithersburg, Maryland) http://webbook.nist.gov/chemistry/fluid (Accessed Sep. 2022). ##
[38]. Ferrando, N., Mougin, P., Defiolle, D., & Vermesse, H. (2008). Solubility and Diffusion Coefficient of Hydrogen Sulphide in Polyethylene Glycol 400 from 100 to 140°C. Oil & Gas Science and Technology - Rev. IFP, 63 (3), 343-351. doi.org/10.2516/ogst:2008009 . ##
[39]. Jalili, A.H., Mehdizadeh, A., Shokouhi, M., Ahmadi, A.N., Hosseini-Jenab, M., & Fateminassab, F. (2010), Solubility and Diffusion of CO2 and H2S in the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethylsulfate. The Journal of Chemical Thermodynamics, 42, 1298–1303. doi.org/10.1016/j.jct.2010.05.008. ##
[40]. Shokouhi, M., Adibi, M., Jalili, A.H., Hosseini-Jenab, M., & Mehdizadeh, A. (2010), Solubility and Diffusion of H2S and CO2 in the Ionic Liquid 1-(2-Hydroxyethyl)-3-methylimidazolium Tetrafluoroborate. Journal of Chemical & Engineering Data, 55, 1663–1668. doi.org/10.1021/je900716q. ##
[41]. Shokouhi, M., Sakhaeinia, H., Jalili, A.H., Zoghi, A.T., & Mehdizadeh, A. (2019), Experimental diffusion coefficients of CO2 and H2S in some ionic liquids using semi-infinite volume method. The Journal of Chemical Thermodynamics, 133, 300-311. doi.org/10.1016/j.jct.2019.02.022. ##
[42]. Shokouhi, M., Vahidi, M., Neshati, K., & Zhalehrajabi, E. (2023). Diffusion coefficient and Absorption of Carbonyl Sulfide in 1-Hexyl-3-methylimidazolium Bis (trifluoromethyl) sulfonylimide ([hmim][Tf2N]), Journal of Chemical & Engineering Data, 68, 586-600. doi.org/10.1021/acs.jced.2c00636. ##
[43]. Kumelan, J., Kamps, A.P.-S., Tuma, D., & Maurer, G. (2006). Solubility of CO2 in the ionic liquid [hmim][Tf2N]. The Journal of Chemical Thermodynamics, 38, 1396-1401. doi.org/10.1016/j.jct.2006.01.013. ##
[44]. Shin, E. K., Lee, B. C., & Lin, J.S. (2008). High-pressure solubilities of carbon dioxide in ionic liquids: 1-Alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Journal of Supercritical Fluids, 45, 282-292. doi.org/10.1016/j.supflu.2008.01.020. ##
[45]. Shiflett, M.B., & Yokozeki, A. (2007). Solubility of CO2 in room temperature ionic liquid [hmim][Tf2N]. The Journal of Physical Chemistry B, 111, 2070-2074. doi.org/10.1021/jp067627+.##
[46]. He, M., Peng, S., Liu, X., Pan, P., & He, Y. (2017). Diffusion coefficients and Henry’s constants of hydrofluorocarbons in [HMIM][Tf2N], [HMIM][TfO], and [HMIM][BF4], The Journal of Chemical Thermodynamics, 112, 43-51. doi.org/10.1016/j.jct.2017.04.009. ##
[47]. Muldoon, M.J., Aki, S.N.V.K., Anderson, J.L., Dixon, J.K., & Brenneck, J.F. (2007). Improving carbon dioxide solubility in ionic liquids. The Journal of Physical Chemistry B, 111: 9001-9009. doi.org/10.1021/jp071897q. ##
[48]. Gomes, M.F.C. (2007). Low pressure solubility and thermodynamics of solvation of carbon dioxide, ethane, and hydrogen in 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amid between temperatures of 283 K and 343 K. Journal of Chemical & Engineering Data, 52, 472 -475. doi.org/10.1021/je0604129. ##
[49]. Moganty, S.S., & Baltus, R.E. (2010). Diffusivity of carbon dioxide in room temperature ionic liquids, Industrial & Engineering Chemistry Research, 49, 9370-9376. doi.org/10.1021/ie101260j. ##
[50]. Chapman, W.G., Gubbins, K.E., Jackson, G., & Radosz, M. (1989). SAFT: Equation-of-state solution model for associating fluids. Fluid Phase Equilibria, 52, 31–38. doi.org/10.1016/0378-3812(89)80308-5. ##
[51]. Shokouhi, M., & Parsafar, G.A. (2008). A New Equation of State Derived by the Statistical Mechanical Perturbation Theory. Fluid Phase Equilibria, 264, 1-11. doi.org/10.1016/j.fluid.2007.10.002. ##
[52]. Saali, A., Sakhaeinia, H., & Shokouhi, M. (2021). Modification of peng–robinson cubic equation of state with correction of the temperature dependency, Term. Journal of Solution Chemistry 50 (3), 402–426. doi.org/10.1007/s10953-021-01065-8. ##
[53]. Saali, A., Shokouhi, M., Koolivand Salooki M., Esfandyari M., Sakhaeinia H., & Sadeghzadeh Ahari J. (2023). Influence of thermodynamically consistent data on artificial neural network modeling: Application to NH3 solubility data in room temperature ionic liquids. Journal of Molecular Liquids, 392, 123496. doi.org/10.1016/j.molliq.123496. ##
[54]. Mashayekhi, M., Sakhaeinia, H., & Shokouhi, M. (2020). Analysis of thermodynamics consistency behavior of CO2 solubility in some associating solvents. International Journal of Thermophysics, 41, 11. doi.org/10.1007/s10765-019-2588-z. ##
[55]. Mashayekhi, M., Saali, A., Shokouhi, M., Sakhaeinia, H., & Jamali Ashtiani S. (2022). Model-dependency of thermodynamic consistency: application to acid gases solubility data in commercial physical solvents. Journal of Solution Chemistry 51, 97 – 125. doi.org/10.1007/s10953-022-01145-3. ##
[56]. Vahidi, M., & Shokouhi, M. (2019). Experimental solubility of carbon dioxide and hydrogen sulfide in 2,2-thiodiglycol. The Journal of Chemical Thermodynamics, 133, 202-207. doi.org/10.1016/j.jct.2019.02.024. ##
[57]. Stryjek R., & Vera J. H. (1986). PRSV - an improved peng-robinson equation of state for pure compounds and mixtures. The Canadian Journal of Chemical Engineering, 64, 323-333. doi.org/10.1002/cjce.5450640224. ##
[58]. Stryjek, R., & Vera, J.H. (1986). PRSV - An Improved Peng-Robinson Equation of State with New Mixing Rules for Strongly Nonideal Mixtures. The Canadian Journal of Chemical Engineering, 64, 334-340. doi.org/10.1002/cjce.5450640225. ##
[59]. Peng, D.Y., & Robinson, D.B. (1976). A New Two-Constant Equation of State. Industrial & Engineering Chemistry Fundamentals, 15, 59-64. doi.org/10.1021/i160057a011. ##
[60] .Panagiotopoulos, A.Z., & Reid R.C. (1986). New mixing rule for cubic equation of state for highly polar asymmetric systems, Equations of State: Theories and applications, K.C. Chao, and R.L. Robinson, eds., ACS Symp. Ser., No. 300, Chapter 28, 571-582. doi/abs/10.1021/bk-1986-0300.ch028. ##
[61]. Dortmund Data Bank Software and Separation Technology http://www.ddbst.com/free-data.html (Accessed Sep. 2022). ##
[62]. VonNiederhausern, D.M., Wilson, G.M., & Giles, N.F. (2006). Critical point and vapor pressure measurements for 17 compounds by a low residence time flow method. Journal of Chemical & Engineering Data, 51 (6), 1990-1995. doi.org/10.1021/je060269j. ##