اندازه‌گیری حلالیت و ضریب نفوذ پروپان در سولفولان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 آزمایشگاه تصفیه و ترمودینامیک، پردیس توسعه صنایع پایین دستی، پژوهشکده گاز، پژوهشگاه صنعت نفت، تهران، ‌ایران

2 دانشکده مهندسی شیمی، دانشگاه تهران، ایران

10.22078/pr.2024.5414.3409

چکیده

مخلوط حلال‌های فیزیکی و آلکانول آمین‌‌ها با عنوان حلال‌های هیبریدی، کلاس جدیدی از حلال‌هایی هستند که در صنعت شیرین‌سازی گازهای طبیعی (C1 و C2) و گاز چگال (C3 و C4) مورد استفاده قرار گرفته‌اند. برای اینکه یک حلال فیزیکی با کارایی خیلی بالا در یک محیط هیبریدی برای جداسازی گازها داشته باشیم، نیاز به اطلاعات دقیقی از میزان حلالیت و ضریب نفوذ گازها می‌باشیم. در این مقاله روش تجربی اندازه‌گیری حلالیت و ضریب نفوذ گاز چگال پروپان در حلال سولفولان به تفصیل بررسی و بر اساس بضاعت موجود روش‌های هم حجم - اشباع برای اندازه‌گیری حلالیت و روش حجم بی نهایت برای اندازه‌گیری ضریب نفوذ که به ترتیب بر اساس اندازه‌گیری دما و فشار و سرعت افت فشار می‌باشند، انتخاب شدند. نتایج به‌دست آمده نشان می‌دهند که حلالیت و نفوذ گاز پروپان در سولفولان با افزایش دما به ترتیب کاهش و افزایش می‌یابند. سپس داده‌های حلالیت با معادله حالت درجه سوم پینگ-رابینسون-استرجیک-ویرا با قاعده اختلاط پاناجیوتوپولس – رید مدل‌سازی و همبسته شدند. نتایج همبستگی داده‌های فشار تجربی با مدل فوق، 30/2% خطای میانگین و 07/7% خطای بیشینه را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Solubility and Diffusion Measurements of Propane in Sulfolane

نویسندگان [English]

  • Mohammad Shokouhi 1
  • Kiandokht Neshati 2
1 Gas division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
2 School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
چکیده [English]

The mixture of physical solvents and alkanol amines as hybrid solvents are a new class of solvents that are used in the sweetening industry of natural gases (C1 and C2) and condensed gas (C3 and C4). In order to have a physical solvent with a very high efficiency as a medium for chemical reactions and separation of gases, it is necessary to have accurate information about the solubility and diffusion coefficient of gases in them. In this study, the experimental method of measuring the solubility and diffusivity of propane gas in sulfolane was carried out in detail and based on the available materials, the isochoric saturation methods for measuring solubility and the infinite volume method for measuring the diffusivity were selected. The obtained results show that the solubility and diffusivity of propane gas in sulfolane decrease and increase, respectively, with increasing temperature. Then, the solubility data were modeled and correlated with the Peng-Robinson-Stryjek-Vera with the Panagiotopoulos-Reid mixing rule. Correlation results of experimental pressure data with the above model show respectively, 2.30% and 7.07% average and maximum error.

کلیدواژه‌ها [English]

  • Diffusion Coefficient
  • Solubility
  • Physical Solvent
  • Sulfolane
  • Propane
[1]. Reynolds, A.J., Verheyen, T.V., & Meuleman, E. (2016). Degradation of amine-based solvents. absorption-based post-combustion capture of carbon dioxide, Elsevier, 399−423. doi.org/10.1016/B978-0-08-100514-9.00016-0.##
[2]. Rostami, A., & Tavan, Y. (2019). Pros and cons of implementing new hybrid amine solution for simultaneous removal of mercaptan and acid gas. Chemical Engineering Research and Design, 143: 150 – 159. doi.org/10.1016/j.cherd.2019.01.012. ##
[3]. Bedell, S.A., & Miller, M. (2007). Aqueous amines as reactive solvents for mercaptan removal. Industrial & Engineering Chemistry Research, 46, 3729-3733. doi.org/10.1021/ie0611554. ##
[4]. Zong, L., & Chen C.-C. (2011). Thermodynamic modeling of CO2 and H2S solubilities in aqueous DIPA solution, aqueous sulfolane-DIPA solution, and aqueous sulfolane-MDEA solution with electrolyte NRTL model. Fluid Phase Equilibria, 306, 190-203. doi.org/10.1016/j.fluid.2011.04.007. ##
[5]. Prausnitz, J.M., Lichtenthaler, R.N., & Azevedo, E.G. (1999). Molecular Thermodynamics of Fluid-Phase Equilibria. 3rd Edition, Printice Hall: Upper Saddle River, NJ. ##
[6]. Yang, X., Rees, R.J., Conway, W., Puxty, G., Yang, Q., & Winkler, D.A. (2017). Computational modeling and simulation of CO2 capture by aqueous amine. Chemical Reviews, 117, 9524−959. doi.org/10.1021/acs.chemrev.6b00662. ##
[7]. Jalili, A.H., Shokouhi, M., Maurer, G., & Hosseini-Jenab, M. (2013). Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate, The Journal of Chemical Thermodynamics, 67, 55–62. doi.org/10.1016/j.jct.2013.07.022. ##
[8]. Bieling, V., Kurz, F., Rumpf, B., & Maurer, G. (1995). Simultaneous Solubility of Ammonia and Carbon Dioxide in Aqueous Solutions of Sodium Sulfate in the Temperature Range 313-393 K and Pressures up to 3 MPa, Industrial & Engineering Chemistry Research, 34, 1449. doi.org/10.1021/ie00043a054. ##
[9]. McQuarrie, D.A. (1976). Statistical Mechanics, Harper and Row, New York. ##
[10]. Zhou, S. (2006). Thermodynamic perturbation theory in fluid statistical mechanics, Physical Review E, 74, 031119. doi.org/10.1103/PhysRevE.74.031119. ##
[11]. Wong, C. F., & Hayduk, W. (1990). Correlations for prediction of molecular diffusivities in liquids at infinite dilution. Canadian Journal of Chemical Engineering, 68, 849-859. doi.org/10.1002/cjce.5450680516. ##
[12]. Einstein, A. (1905). On the movement of small particles suspended in a stationary liquid demanded by the molecular kinetic theory of heart. Annalen der physik, 17, 549-560. ##
[13]. Wilke, C.R., Chang, P. (1955). Correlation of diffusion coefficients in dilute solutions AIChE Journal, 1, 264-270. ##
[14]. Scheibel, E.G. (1954). Correspondence. Liquid diffusivities. Viscosity of gases. Industrial & Engineering Chemistry Research, 46, 2007-2008. doi.org/10.1021/ie50537a062. ##
[15]. Arnold, J. H. (1930). Studies in diffusion. II. A kinetic theory of diffusion in liquid systems, Journal of The American Chemical Society, 52,  3937-3955. doi.org/10.1021/ja01373a025. ##
[16]. Schmidt T. (1989) Mass transfer by diffusion. In AOSTRA Handbook on oil sands, Bitumens and heavy oils; L. G. Hepler, C. His, Eds.; Alberta oil sands technology & research authority (AOSTRA): Edmonton, Alberta, Canada, Chapter 12. ##
[17]. Grogan, A.T., & Pinczewski W.V. (1987). The Role of Molecular Diffusion Processes in Tertiary CO2 Flooding, Journal of Petroleum Technology, 39 (5), 591-602. doi.org/10.2118/12706-PA. ##
[18]. Renner T.A. (1988). Measurement and Correlation of Diffusion Coefficients for CO2 and Rich-Gas Applications, SPE Reservoir Engineering 3 (2), 517-523. doi.org/10.2118/15391-PA. ##
[19]. Camper, D., Becker, C., Koval, C., & Noble. R. (2006). Diffusion and Solubility Measurements in Room Temperature Ionic Liquids, Industrial & Engineering Chemistry Research, 45, 445-450. doi.org/10.1021/ie0506668. ##
[20]. Yokozeki, A. (2002). Time-dependent behavior of gas absorption in lubricant oil.  International Journal of Refrigeration,  25, 695-704. doi.org/10.1016/S0140-7007(01)00066-4. ##
[21]. Hou, Y., & Baltus, R. (2007). Experimental measurement of the solubility and diffusivity of CO2 in room-temperature ionic liquids using a transient thin-liquid-film method, Industrial & Engineering Chemistry Research, 46, 8166-8175. doi.org/10.1021/ie070501u. ##
[22]. Morgan, D., Ferguson, L., & Scovazzo, P. (2005). Diffusivities of gases in room-temperature ionic liquids: data and correlations obtained using a lag-time technique. Industrial & Engineering Chemistry Research, 44, 4815-4823. doi.org/10.1021/ie048825v. ##
[23]. Sheikha, H., Pooladi-Darvish, M., & Mehrotra, A.K. (2005). Development of graphical methods for estimating the diffusivity coefficient of gases in bitumen from pressure-decay data. Energy & Fuels, 19, 2041-2049. doi.org/10.1021/ef050057c. ##
[24]. Sheikha, H., Mehrotra, A.K., & Pooladi-Darvish, M. (2006). An inverse solution methodology for estimating the diffusion coefficient of gases in Athabasca bitumen from pressure-decay data. Journal of Petroleum Science and Engineering, 53, 189-202. doi.org/10.1016/j.petrol.2006.06.003. ##
[25]. Yang, C., & Gu, Y.A. (2003). SPE Annual Technical Conference and Exhibition, Denver, Co, October 5-8, SPE Paper No. 84202.
[26]. Woessner, D.E., Snowden, B.S., George, R.A., & Melrose, J.C. (1969). Dense gas diffusion coefficients for the methane-propane system. Industrial & Engineering Chemistry Fundamentals, 8 (4), 779-786. doi.org/10.1021/i160032a029. ##
[27]. Fu, B.C.H., & Phillips, C. R. (1979). New technique for determination of diffusivities of volatile hydrocarbons in semi-solid bitumen. Fuel 58, 557-560. doi.org/10.1016/0016-2361(79)90002-4. ##
[28]. Yu, C.S.L. (1984). The time-dependent diffusion of CO2 in normal-hexadecane at elevated Pressures, M.Sc. Thesis, University of Calgary, Calgary, Canada. ##
[29]. Leu, A.-D., Robinson, D.B., Chung, S.Y.-K., & Chen, C.-J. (1992). The equilibrium phase properties of the propane-methanol and n-butane-methanol binary systems. The Canadian Journal of Chemical Engineering, 70, 330-334. doi.org/10.1002/cjce.5450700217. ##
[30]. Galivel-Solastiouk, F., Laugier, S., & Richon, D. (1986). Vapor-liquid equilibrium data for the propane-methanol and propane-methanol-carbon dioxide system. Fluid Phase Equilibria, 28, 73-85. doi.org/10.1016/0378-3812(86)85069-5. ##
[31]. Horizoe, H., Tanimoto, T., Yamamoto, I., & Kano, Y., (1993) Phase equilibrium study for separation of ethanol-water solution using subcritical and supercritical hydrocarbon solvent extraction. Fluid Phase Equilibria, 84: 297-320. doi.org/10.1016/0378-3812(93)85129-A. ##
[32]. Zabaloy, M.S., Mabe, G.D.B., Bottini, S.B., & Brignole, E.A. (1993). Isothermal vapor-liquid equilibrium data for the binaries propane-2-propanol and propylene-2-propanol. Journal of Chemical & Engineering Data, 38,40-43.  doi.org/10.1021/je00009a009. ##  
[33]. Gros, H.P., Zabaloy, M.S., & Brignole, E.A. (1996). High-pressure vapor-liquid equilibria propane+2-butanol, propylene+2-butanol, and propane+2-propanol. Journal of Chemical & Engineering Data, 41, 335-338. ##
doi.org/10.1021/je9502511. ##
[34]. Jou, F.-Y., Otto, F.D., & Matter, A.E. (1993). The solubility of propane in 1,2-ethanediol at elevated pressure. The Journal of Chemical Thermodynamics, 25, 37-40, doi.org/10.1006/jcht.1993.1004. ##
[35]. Jalili, A.H., Rahmati-Rostami, M., Ghotbi, C., & Hosseini-Jenab, M., Ahmadi A.N. (2009) Solubility of H2S in Ionic Liquids [bmim][PF6], [bmim][BF4], and [bmim][Tf2N]. Journal of Chemical & Engineering Data, 54, 1844 – 1849. doi.org/10.1021/je8009495. ##
[36]. Zoghi, A.T., Shokouhi, M., Naderi, F., Abbasghorbani, M., Fatehi, A., Pouladi, B., & Adhami, M.A. (2022). Investigation of Aqueous Diethanolamine Performance in Prediction of Hydrogen Sulfide and Carbonyl sulfide Removal from Liquefied Propane. Journal of Solution Chemistry, 51, 84 - 96. doi.org/10.1007/s10953-021-01131-1. ##
[37]. NIST Chemistry Webbook, (Natural Institute Standard Technology, Gaithersburg, Maryland) http://webbook.nist.gov/chemistry/fluid (Accessed Sep. 2022). ##
[38]. Ferrando, N., Mougin, P., Defiolle, D., & Vermesse, H. (2008). Solubility and Diffusion Coefficient of Hydrogen Sulphide in Polyethylene Glycol 400 from 100 to 140°C. Oil & Gas Science and Technology - Rev. IFP, 63 (3), 343-351. doi.org/10.2516/ogst:2008009 . ##
[39]. Jalili, A.H., Mehdizadeh, A., Shokouhi, M., Ahmadi, A.N., Hosseini-Jenab, M., & Fateminassab, F. (2010), Solubility and Diffusion of CO2 and H2S in the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethylsulfate. The Journal of Chemical Thermodynamics, 42, 1298–1303. doi.org/10.1016/j.jct.2010.05.008. ##
[40]. Shokouhi, M., Adibi, M., Jalili, A.H., Hosseini-Jenab, M., & Mehdizadeh, A. (2010), Solubility and Diffusion of H2S and CO2 in the Ionic Liquid 1-(2-Hydroxyethyl)-3-methylimidazolium Tetrafluoroborate. Journal of Chemical & Engineering Data, 55, 1663–1668. doi.org/10.1021/je900716q. ##
[41]. Shokouhi, M., Sakhaeinia, H., Jalili, A.H., Zoghi, A.T., & Mehdizadeh, A. (2019), Experimental diffusion coefficients of CO2 and H2S in some ionic liquids using semi-infinite volume method. The Journal of Chemical Thermodynamics, 133, 300-311. doi.org/10.1016/j.jct.2019.02.022. ##
[42]. Shokouhi, M., Vahidi, M., Neshati, K., & Zhalehrajabi, E. (2023). Diffusion coefficient and Absorption of Carbonyl Sulfide in 1-Hexyl-3-methylimidazolium Bis (trifluoromethyl) sulfonylimide ([hmim][Tf2N]), Journal of Chemical & Engineering Data, 68, 586-600. doi.org/10.1021/acs.jced.2c00636. ##
[43]. Kumelan, J., Kamps, A.P.-S., Tuma, D., & Maurer, G. (2006). Solubility of CO2 in the ionic liquid [hmim][Tf2N]. The Journal of Chemical Thermodynamics, 38, 1396-1401. doi.org/10.1016/j.jct.2006.01.013. ##
[44]. Shin, E. K., Lee, B. C., & Lin, J.S. (2008). High-pressure solubilities of carbon dioxide in ionic liquids: 1-Alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Journal of Supercritical Fluids, 45, 282-292. doi.org/10.1016/j.supflu.2008.01.020. ##
[45]. Shiflett, M.B., & Yokozeki, A. (2007). Solubility of CO2 in room temperature ionic liquid [hmim][Tf2N]. The Journal of Physical Chemistry B, 111, 2070-2074. doi.org/10.1021/jp067627+.##
[46]. He, M., Peng, S., Liu, X., Pan, P., & He, Y. (2017). Diffusion coefficients and Henry’s constants of hydrofluorocarbons in [HMIM][Tf2N], [HMIM][TfO], and [HMIM][BF4], The Journal of Chemical Thermodynamics, 112, 43-51. doi.org/10.1016/j.jct.2017.04.009. ##
[47]. Muldoon, M.J., Aki, S.N.V.K., Anderson, J.L., Dixon, J.K., & Brenneck, J.F. (2007). Improving carbon dioxide solubility in ionic liquids. The Journal of Physical Chemistry B, 111: 9001-9009. doi.org/10.1021/jp071897q. ##
[48]. Gomes, M.F.C. (2007). Low pressure solubility and thermodynamics of solvation of carbon dioxide, ethane, and hydrogen in 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amid between temperatures of 283 K and 343 K. Journal of Chemical & Engineering Data, 52, 472 -475. doi.org/10.1021/je0604129. ##
[49]. Moganty, S.S., & Baltus, R.E. (2010). Diffusivity of carbon dioxide in room temperature ionic liquids, Industrial & Engineering Chemistry Research, 49, 9370-9376. doi.org/10.1021/ie101260j. ##
[50]. Chapman, W.G., Gubbins, K.E., Jackson, G., & Radosz, M. (1989). SAFT: Equation-of-state solution model for associating fluids. Fluid Phase Equilibria, 52, 31–38. doi.org/10.1016/0378-3812(89)80308-5. ##
[51]. Shokouhi, M., & Parsafar, G.A. (2008). A New Equation of State Derived by the Statistical Mechanical Perturbation Theory. Fluid Phase Equilibria, 264, 1-11. doi.org/10.1016/j.fluid.2007.10.002. ##
[52]. Saali, A., Sakhaeinia, H., & Shokouhi, M. (2021). Modification of peng–robinson cubic equation of state with correction of the temperature dependency, Term. Journal of Solution Chemistry 50 (3), 402–426. doi.org/10.1007/s10953-021-01065-8. ##
[53]. Saali, A., Shokouhi, M., Koolivand Salooki M., Esfandyari M., Sakhaeinia H., & Sadeghzadeh Ahari J. (2023). Influence of thermodynamically consistent data on artificial neural network modeling: Application to NH3 solubility data in room temperature ionic liquids. Journal of Molecular Liquids, 392, 123496. doi.org/10.1016/j.molliq.123496. ##
[54]. Mashayekhi, M., Sakhaeinia, H., & Shokouhi, M. (2020). Analysis of thermodynamics consistency behavior of CO2 solubility in some associating solvents. International Journal of Thermophysics, 41, 11. doi.org/10.1007/s10765-019-2588-z. ##
[55]. Mashayekhi, M., Saali, A., Shokouhi, M., Sakhaeinia, H., & Jamali Ashtiani S. (2022). Model-dependency of thermodynamic consistency: application to acid gases solubility data in commercial physical solvents. Journal of Solution Chemistry 51, 97 – 125. doi.org/10.1007/s10953-022-01145-3. ##
[56]. Vahidi, M., & Shokouhi, M. (2019). Experimental solubility of carbon dioxide and hydrogen sulfide in 2,2-thiodiglycol. The Journal of Chemical Thermodynamics, 133, 202-207.  doi.org/10.1016/j.jct.2019.02.024. ##
[57]. Stryjek R., & Vera J. H. (1986). PRSV - an improved peng-robinson equation of state for pure compounds and mixtures. The Canadian Journal of Chemical Engineering, 64, 323-333. doi.org/10.1002/cjce.5450640224. ##
[58]. Stryjek, R., & Vera, J.H. (1986). PRSV - An Improved Peng-Robinson Equation of State with New Mixing Rules for Strongly Nonideal Mixtures. The Canadian Journal of Chemical Engineering, 64, 334-340. doi.org/10.1002/cjce.5450640225. ##
[59]. Peng, D.Y., & Robinson, D.B. (1976). A New Two-Constant Equation of State. Industrial & Engineering Chemistry Fundamentals, 15, 59-64. doi.org/10.1021/i160057a011. ##
[60] .Panagiotopoulos, A.Z., & Reid R.C. (1986). New mixing rule for cubic equation of state for highly polar asymmetric systems, Equations of State: Theories and applications, K.C. Chao, and R.L. Robinson, eds., ACS Symp. Ser., No. 300, Chapter 28, 571-582. doi/abs/10.1021/bk-1986-0300.ch028. ##
[61]. Dortmund Data Bank Software and Separation Technology http://www.ddbst.com/free-data.html (Accessed Sep. 2022). ##
[62]. VonNiederhausern, D.M., Wilson, G.M., & Giles, N.F. (2006). Critical point and vapor pressure measurements for 17 compounds by a low residence time flow method. Journal of Chemical & Engineering Data, 51 (6), 1990-1995. doi.org/10.1021/je060269j. ##