تعیین بهترین ترکیب داده‌های چاه‌پیمایی و رخساره‌های الکتریکی در محاسبه اشباع آب، سازند‌های کنگان و دالان در بخش مرکزی خلیج فارس

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشکده زمین‌شناسی، پردیس علوم پایه، دانشگاه تهران، ایران

چکیده

تعیین اشباع آب یکی از مهم‌ترین پارامتر‌های مخزنی جهت تعیین حجم هیدروکربن درجا است که باید با دقت بالا محاسبه شود. در این مطالعه پس از آنکه تصحیحات لازم برروی مغزه‌های پایه آبی سازندهای کنگان و دالان صورت گرفت، به روش آزمایش دین‌استارک اشباع آب مغزه محاسبه گردید. پس از اندازه‌گیری‌هایی الکتریکی و تعیین ضرایب آرچی برروی مغزه، مقادیر اشباع آب از مدل‌های الکتریکی آرچی، واکسمن اسمیت، آب دوگانه و آرچی- آب دوگانه در نرم‌افزار ژئولاگ 7 محاسبه شد. برای تعمیم اشباع آب به سایر چاه‌های این‌میدان، سه مدل رخساره‌ای با روش خوشه‌‌بندی چند کیفیتی بر پایه نمودار تولید شد و در یکی از میادین بخش مرکزی خلیج فارس اعمال شد. سپس در کل چاه اختلاف میانگین اشباع آب بین روش آزمایش دین‌استارک و مدل‌های الکتریکی در 3 نوع مدل رخساره‌ای مجزا اندازه‌گیری شد. نتایج نشان داد که در هر سه مدل رخساره‌ای ایجاد شده، مقادیر میانگین اشباع آب محاسبه شده از معادلات، نسبت به اشباع آب محاسبه شده از روش آزمایش دین‌استارک بالاتر هستند. از مقایسه بین مدل‌های رخساره‌ای مشخص شد مدل رخساره‌ای که براساس لاگ‌های ورودی مقاومت الکتریکی، صوتی، نوترون و چگالی ایجاد شد، کمترین اختلاف میانگین اشباع آب آزمایش دین‌استارک با مدل‌های الکتریکی را نشان داد. از مقایسه میانگین اشباع آب در روش دین‌استارک و مدل‌های الکتریکی بین رخساره‌های الکتریکی یک مدل براساس لاگ‌های ورودی آن، نتیجه‌گیری شد که پارامتر‌های پتروفیزیکی تخلخل، زمان عبور موج صوتی، حجم شیل و چگالی برخلاف مقاومت الکتریکی رابطه مستقیم با کاهش اختلاف میانگین اشباع آب دارند، اما سنگ‌شناسی روی اختلاف میانگین اشباع آب بین روش دین‌استارک با مدل‌های الکتریکی تأثیر کمتری دارد. در نتیجه جهت انتخاب نمونه برای تعیین ضرایب آرچی، استفاده از این روش تعیین رخساره الکتریکی با لاگ‌های ورودی آن جهت تخمین اشباع آب مناسب است.
 

کلیدواژه‌ها


عنوان مقاله [English]

Determining the Best Log Combination and Electrofacies in Water Saturation Calculation, Kangan and Dalan Formations in the Central Persian Gulf

نویسندگان [English]

  • Reza Gholami
  • Vahid Tavakoli
School of Geology, College of Science, University of Tehran, Iran
چکیده [English]

Calculating water saturation is one of the most important reservoir parameters for determining the volume of hydrocarbons in place, which it must be calculated with high accuracy. In this study, after the necessary corrections were made on the Water-base-core in Kangan and Dalan formations, the core water saturation was calculated by the Dean-Stark test method. After electrical measurements and determination of Archie coefficients on the core, water saturation values were calculated from Archie electrical models, Waxman Smith, Dual Water, and Archie-Dual Water in Geolog7 software. To generalize water saturation to other wells in this field, three facies models were produced by Multi-Resolution Graph-based Clustering (MRGC) and applied in one of the fields in the Central Persian Gulf. Afterwards, in the whole well, the difference between the average water saturation of the Dean-Stark test method and the electrical models was measured in 3 facies models. The results showed that in all three facies models created, the average values of water saturation calculated from the equations were higher than the water saturation calculated from the Dean-Stark test method. By making a comparison between facies models, it is obvious that the facies models based on input logs, including electrical resistance, sonic, neutron, and density, showed the least difference between the average water saturation of the Dean-Stark test and the electrical models. Comparing the average water saturation in the Dean-Stark method and the electrical models between the electrical facies of a model based on its input logs, it was concluded that the petrophysical parameters including porosity, sonic wave transit time, shale volume and density, as opposed to electrical resistance, are directly related to the reduction of the average water saturation difference. But lithology has less effect on the difference in average water saturation between the Dean-Stark method and electrical models. Therefore, to select the sample for determining the coefficients of Archie, it is appropriate to use this method of determining the electrical facies.

کلیدواژه‌ها [English]

  • Electrical Model
  • Archie-Dual Water
  • Saturation exponents
  • Dean-Stark
  • Electrical facies
[1]. Ronchi P., Ortenzi A, Borromeo O, Claps M, Zempolich WG (2010) Depositional setting and diagenetic processes and their impact on the reservoir quality in the late Visean–Bashkirian Kashagan carbonate platform (Pre-Caspian Basin, Kazakhstan), AAPG Bulletin, 94, 9: 1313–1348.##

[2]. Rustichelli A, Tondi E, Agosta F, Di Celma C, Giorgioni M (2013) Sedimentologic and diagenetic controls on pore-network characteristics of Oligocene–Miocene ramp carbonates (Majella Mountain, central Italy), AAPG Bulletin, 97, 3: 487–524. ##

[3]. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics, Transactions of the AIME, 146, 01: 54–62. ##

[4]. Qin Z, Pan H, Ma H, Konaté AA, Hou M, Luo S (2016) Fast prediction method of Archie’s cementation exponent, Journal of Natural Gas Science and Engineering 34: 291–297. ##

[5]. Glover PWJ (2017) A new theoretical interpretation of Archie’s saturation exponent, Solid Earth, 8: 805–816. ##

[6]. Soleymanzadeh A, Jamialahmadi M, Helalizadeh A, Soulgani BS (2018) A new technique for electrical rock typing and estimation of cementation factor in carbonate rocks, Journal of Petroleum Science and Engineering, 166: 381–388. ##

[7]. Nazemi M, Tavakoli V, Rahimpour-Bonab H, Hosseini M, Sharifi-Yazdi M (2018) The effect of carbonate reservoir heterogeneity on Archie’s exponents (a and m), an example from Kangan and Dalan gas formations in the central Persian Gulf, Journal of Natural Gas Science and Engineering, 59: 297–308. ##

[8]. Hamada GM, Almajed AA, Okasha TM, Algathe AA (2013) Uncertainty analysis of Archie’s parameters determination techniques in carbonate reservoirs, Journal of Petroleum Exploration and Production Technology, 3: 1, 1–10. ##

[9]. Galiuk HS, Saadat K, Kazemzadeh E (2011) A case study of saturation exponent measurement on some carbonate cores at full reservoir conditions,” In International Symposium of the Society of Core Analysts held in Austin, Texas, USA, 18–21. ##

[10]. Worthington PF (2011) The petrophysics of problematic reservoirs, Journal of Petroleum Technology, 63, 12: 88–97. ##

[11]. Dean EW, Stark DD (1920) A convenient method for the determination of water in petroleum and other organic emulsions, Industrial & Engineering Chemistry, 12, 5: 486–490. ##

[12]. Richardson JG, Holstein ED, Rathmell JJ, Warner HR (1994) Investigation of as-received oil-base-core water saturations from the ivishak reservoir, Brudhoe Bay Field, SPE, 28592: 25–28. ##

[13]. Woodhouse R (1987) Problems in sw calibration using oil mud cores and core electrical measurements, The Log Analyst, 28, 3: 289–293. ##

[14]. Richardson JG, Holstein ED, Rathmell JJ, Warner Jr HR (1997) Validation of as-received oil-based-core water saturations from Prudhoe Bay, SPE Reservoir Engineering, 12, 01: 31–36. ##

[15]. Serra O, Abbott HT (1982) The contribution of logging data to sedimentology and stratigraphy, Society of Petroleum Engineers Journal, 22, 01: 117-131. ##

[16]. Ye S.J, Rabiller P (2000) A new tool for electro-facies analysis: multi-resolution graph-based clustering, in SPWLA 41st annual logging symposium, Society of Petrophysicists and Well-Log Analysts. ##

[17]. Alsharhan AS (2006) Sedimentological character and hydrocarbon parameters of the middle Permian to Early Triassic Khuff Formation, united Arab Emirates, GeoArabia, 11, 3: 121–158. ##

[18]. Aali J, Rahimpour-Bonab H, Kamali MR (2006) Geochemistry and origin of the world’s largest gas field from Persian Gulf, Iran, Journal of Petroleum Science and Engineering, 50, 3–4: 161–175. ##

[19]. Rahimpour-Bonab H (2007) A procedure for appraisal of a hydrocarbon reservoir continuity and quantification of its heterogeneity, Journal of Petroleum Science and Engineering, 58, 1–2: 1–12. ##

[20]. Szabo F, Kheradpir A (1978) Permian and Triassic stratigraphy, Zagros basin, south‐west Iran, Journal of Petroleum Geology, 1, 2: 57–82. ##

[21]. Konyuhov AI, Maleki B (2006) The Persian Gulf Basin: geological history, sedimentary formations, and petroleum potential, Lithology and Mineral Resources, 41, 4: 344–361. ##

[22]. Ghazban F (2007) Petroleum geology of the Persian Gulf, Joint publication, Tehran University Press and National Iranian Oil Company, Tehran. ##

[23]. Tavakoli V (2016) Ocean chemistry revealed by mineralogical and geochemical evidence at the permian‐triassic mass extinction, offshore the Persian Gulf, Iran, Acta Geologica Sinica English Edition, 90, 5: 1852–1864. ##

[24]. Abdolmaleki J, Tavakoli V (2016) Anachronistic facies in the early Triassic successions of the Persian Gulf and its palaeoenvironmental reconstruction, Palaeogeogr Palaeoclimatol Palaeoecol, 446: 213–224. ##

[25]. Insalaco E, Virgone A, Courme B, Gaillot J, Kamali M, Moallemi A, Lotfpour M, Monibi S (2006) Upper Dalan member and Kangan formation between the Zagros mountains and offshore Fars, Iran: depositional system, biostratigraphy and stratigraphic architecture, GeoArabia, 11, 2: 75–176. ##

[26]. Keelan DK (1997) A critical review of core analysis techniques, Journal of Canadian Petroleum Technology, 11, 02:1972. ##

[27]. McCoy DD, Grieves WA () Use of resistivity logs to calculate water saturation at prudhoe bay, SPE Reservoir Engineering, 12, 1: 45–51. ##

[28]. Sutadiwirya Y, Abrar B, Henardi D, NuGRoho BH, Wibowo RA (2008) Using MRGC (multi resolution graph-based clustering) method to integrate log data analysis and core facies to define electrofacies, in the Benua Field, in Central Sumatera Basin, Indonesia, International Gas Union Research Conference, IGRC, Paris. ##

[29]. Tavakoli V, Jamalian A (2018) Microporosity evolution in Iranian reservoirs, Dalan and Dariyan formations, the central Persian Gulf, Journal of Natural Gas Science and Engineering, 52: 155–165. ##

[30]. Holstein ED, Warner Jr HR (1994) Overview of water saturation determination for the ivishak (sadlerochit) reservoir, prudhoe bay field, in SPE Annual Technical Conference and Exhibition. ##

[31]. Juhasz I (1981) Normalised Qv-the key to shaly sand evaluation using the Waxman-Smits equation in the absence of core data, in SPWLA 22nd Annual Logging Symposium. ##

[32]. Clavier C, Coates G, Dumanoir J (1977) Theory and experimental basis for the dual-water model for interpretation of shaly sands, SPE, 6859. ##

[33]. Handwerger DA, Willberg D, Pagels M, Rowland B, Keller JF (2012) Reconciling retort versus Dean Stark measurements on tight shales, SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 5, 3932–3945. ##

[34]. Kazak ES, Kazak A V (2019) A novel laboratory method for reliable water content determination of shale reservoir rocks, Journal of Petroleum Science and Engineering 183: 106301. ##