[1]. Lucia, F. J. (2007). Carbonate reservoir characterization: an integrated approach. Springer-Verlag. ##
[2]. Coates, G. R., & Dumanoir, J. L. (1973). A new approach to improved log-derived permeability. In SPWLA Annual Logging Symposium. SPWLA-1973. SPWLA. ##
[3]. Timur, A. (1968). An investigation of permeability, porosity, & residual water saturation relationships for sandstone reservoirs. The Log Analyst, 9(04). ##
[4]. Jamialahmadi, M., & Javadpour, F. G. (2000). Relationship of permeability, porosity and depth using an artificial neural network. Journal of Petroleum Science and Engineering, 26(1), 235-239. doi.org/10.1016/S0920-4105(00)00037-1. ##
[5]. Singh, S. (2005). Permeability prediction using artificial neural network (ANN): A case study of uinta basin. SPE Annual Technical Conference and Exhibition. doi.org/10.2118/99286-STU. ##
[6]. Urang, J. G., Ebong, E. D., Akpan, A. E., & Akaerue, E. I. (2020). A new approach for porosity and permeability prediction from well logs using artificial neural network and curve fitting techniques: A case study of Niger Delta, Nigeria. Journal of Applied Geophysics, 183, 104207. doi.org/10.1016/j.jappgeo.2020.104207 . ##
[7]. Okon, A. N., Adewole, S. E., & Uguma, E. M. (2021). Artificial neural network model for reservoir petrophysical properties: porosity, permeability and water saturation prediction. Modeling Earth Systems and Environment, 7(4), 2373-2390. doi:10.1007/s40808-020-01012-4. ##
[8]. Abdel Azim, R., & Aljehani, A. (2022). Neural network model for permeability prediction from reservoir well logs. Processes, 10(12), 2587. doi.org/10.3390/pr10122587. ##
[9]. Piryonesi, S. M., & El-Diraby, T. E. (2020). Role of data analytics in infrastructure asset management: overcoming data size and quality problems. Journal of Transportation Engineering, Part B: Pavements, 146(2), 04020022. doi.org/doi:10.1061/JPEODX.0000175. ##
[10]. Tibshirani, R., Hastie, T., & Friedman, J. H. (2001). The elements of statistical learning: data mining, inference, and prediction : with 200 full-color Illustrations. Springer. https://books.google.com/books?id=SECjnQAACAAJ. ##
[11]. Shi, X., Cui, Y., Guo, X., Yang, H., Chen, R., Li, T., Li, R., Wang, R., Wang, J., & Meng, L. (2017). Logging facies classification and permeability evaluation: multi-resolution graph based clustering. SPE Annual Technical Conference and Exhibition, https://doi.org/10.2118/187030-MS. ##
[12]. Shakeri, A., & Parham, S. (2013). Reservoir characterization and quality controlling factors of the fahliyan formation located in Southwest Iran. Journal of Sciences, Islamic Republic of Iran, 24(2), 135-148. ##
[13]. Lasemi, Y., & Kondroud, K. N. (2008). Sequence stratigraphic control on prolific HC reservoir development, Southwest Iran. Oil and Gas Journal, 106(1), 34-38. ##
[14]. Huang, Z., Shimeld, J., Williamson, M., & Katsube, J. (1996). Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada. Geophysics, 61(2), 422-436.doi.org/10.1190/1.1443970. ##
[15]. Ye, S. J., & Rabiller, P. (2005). Automated electrofacies ordering. Petrophysics, 46, 409-423. ##
[16]. Mohebian, R., Bagheri, H., Kheirollahi,M., Bahrami, H. (2022). Permeability estimation using an integration of multi-resolution graph-based clustering and rock typing methods in an Iranian Carbonate Reservoir. Journal of Petroleum Science and Technology 11(3): 31, 2021, Pages 49-58. doi:10.22078/JPST.2022.4737.1785. ##