فرایند جوشکاری الکتروفیوژن لوله‌های پلی‌اتیلن با استفاده از پلیمر مبتنی بر جنس اتصالات جهت استحکام بیشتر سرجوش: بهینه سازی و شبیه سازی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیمی، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران

چکیده

در حال حاضر گاز طبیعی بعنوان منبع انرژی عمده در سبد انرژی مصرف کنندگان مورد استفاده قرار می‌گیرد. انتقال ایمن گاز از طریق شبکه خطوط لوله زیرزمینی از جنس پلی‌اتیلن صورت می پذیرد. اتصال این لوله ها با استفاده از کوپلرهای الکتروفیوژنی و یا از طریق اتصال لب به لب به‌عنوان سیم گرم‌کننده استفاده شده و ایجاد حرارت لازم را برای عملیات ذوب و امتزاج در منطقه جوش برعهده دارد. ابتدا حرارت ایجاد شده بخشی از اتصال را به حالت ذوب در آورده و سپس مواد پلی اتیلن مذاب به سطح لوله درون کوپلر رسیده و لایه ای از آن را نیز به حالت مذاب در آورده و در شرایط دمایی و فشار منطقه ذوب امتزاج پلیمری صورت می گیرد. در نهایت پس از خنک شدن یک جوش با استحکام بالا ایجاد می شود. یکی از ایرادات مهم بروز عوامل ایجاد جوش ضعیف، فاصله غیر استاندارد بین لوله و اتصال به صورت یک فضای خالی پر از هوا می باشد که مانع انتقال حرارت از کوپلر به لوله است. در این مقاله از یک ماده واسط سازگار با مواد سازنده لوله و اتصال برای پرکردن فضای خالی بین لوله و کوپلر استفاده شده تا با انتقال حرارت بیشتر موجب ایجاد یک جوش با استحکام شود. جوشکاری الکتروفیوژن در نرم افزار مهندسی شبیه سازی شده سپس با استفاده از اعمال فضای خالی پروفایل حرارتی با حالت استاندارد بررسی شد. سپس این پروفایل های کامل و ناقص حرارتی با انجام آزمایشات واقعی جوشکاری در شرایط استاندارد با وجود فضای خالی و با وجود ماده واسط پلی اتیلنی مورد صحه گذاری قرار گرفت. نتایج نشان داده است که با استفاده از ماده واسط احتمال بروز جوش ناقص بسیار کاهش یافته و در عین حال استحکام جوش نیز استاندارد و مطلوب می باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Electrofusion Welding Process of Polyethylene Pipes Using Material-Based Polymer for Enhanced Joint Strength: Optimization and Simulation

نویسندگان [English]

  • Abdolali Rahimi mozaffari
  • Masoome Emadi
  • Bizhan Honarvar
  • Moein Nabipour
Department of Chemical Engineering, Marv. C., Islamic Azad University, Marvdasht, Iran
چکیده [English]

Natural gas is currently utilized as a major energy source in the energy mix of consumers. The safe transportation of gas is conducted through underground polyethylene pipeline networks. Over time, polyethylene pipes have gradually replaced low and medium-pressure steel pipes due to their advantages, including corrosion resistance and ease of installation. The connection of these pipes is typically achieved using electrofusion couplers or through butt fusion, where a heating wire generates the necessary heat for melting and mixing in the weld area. Initially, the heat generated melts part of the coupler, allowing the molten polyethylene to reach the surface of the pipe within the coupler, melting a layer of it as well. Under specific temperature and pressure conditions, polymer mixing occurs, resulting in a high-strength weld upon cooling.
One significant issue leading to weak welds is the non-standard gap between the pipe and coupler, which creates an air-filled void that hinders heat transfer from the coupler to the pipe. This paper introduces an intermediate material compatible with the materials of both the pipe and coupler to fill the void between them, enhancing heat transfer and facilitating the formation of a strong weld. The electrofusion welding process was simulated using engineering software, analyzing thermal profiles under standard conditions and with the presence of a void. These complete and incomplete thermal profiles were validated against actual welding tests conducted under standard conditions with and without the polyethylene intermediate material. Finally, the strength of samples that incorporated the intermediate material in their welding was assessed through standard destructive testing. The results indicate that utilizing the intermediate material significantly reduces the likelihood of incomplete welds while ensuring that weld strength meets established standards and requirements.

کلیدواژه‌ها [English]

  • : Electrofusion welding
  • polyethylene
  • electrofusion couplers
  • welding filler material
  • thermal profile
  • simulation
[1]. Rasooly, M., Mohseni, E., & Hosseini, F. (2024). Arrangement of nondestructive tests for technical inspection process of electrofusion weld in gas polyethylene pipes. e-Journal of Nondestructive Testing - ISSN 1435-4934 - www.ndt.net.##
[2]. Ismoilovich, M. N. (2024). FURTHER development of polymer pipe welding technology. Web of Technology: Multidimensional Research Journal, 2(12), 331-340.##
[3]. Doaei, M., & Tavallali, M. S. (2018). Intelligent screening of electrofusion-polyethylene joints based on a thermal NDT method. Infrared Physics & Technology, 90, 1-7. doi.org/10.1016/j.infrared.2018.01.030.##
[4]. Zeng, D., Iurzhenko, M., & Demchenko, V. (2025). An analytical mathematical model for melting layer thickness of HDPE pipes at thermal butt-fusion welding. In Welding and Related Technologies (pp. 111-114). CRC Press. ISBN 978-1-032-85176-1.##
[5]. Gueugnaut, D., Tessier, M., Bechrouri, M., & Lopitaux, A. (2025). Acceptance Criteria for Defects in Polyethylene Welds, Coupling Phased Array Ultrasonic Testing and Destructive Tests. Journal of Nondestructive Evaluation, 44(1), 26.##
[6]. Shishesaz, M., Gatea, A. H., Moradi, S., & Yaghoubi, S. (2024). Stress analysis in the buried polyethylene pipes with viscoelastic behavior: a finite element study. Discover Applied Sciences, 6(11), 616.##
[7]. Chen, T., Wang, Q., Xiao, Q., Wang, H., & Liu, Y. (2024). Automatic detection of thermal fusion joints defects of high-density polyethylene gas pipes using ultrasonic total focusing method and deep learning. doi.org/10.21203/rs.3.rs-5395473/v1.##
[8]. Xiang, G., Hu, Y., Zeng, S., Shi, J., & Zheng, J. (2021, July). Demonstration of Intelligent Welding Machine for Polyethylene Pipe. In Pressure Vessels and Piping Conference (Vol. 85321, p. V002T03A009). American Society of Mechanical Engineers. doi.org/10.1115/PVP2021-62014. ##
[9]. Tutunchi, A., Eskandarzade, M., Aghamohammadi, R., Masalehdan, T., & Osouli-Bostanabad, K. (2022). Risk assessment of electrofusion joints in commissioning of polyethylene natural gas networks. International Journal of Pressure Vessels and Piping, 196, 104627. doi.org/10.1016/j.ijpvp.2022.104627.##
[10]. Kanninen, M. F., Buczala, G. S., Kuhlman, C. J., Green, S. T., Grigory, S. C., O'Donoghue, P. E., & McCarthy, M. A. (1992). A theoretical and experimental evaluation of the long term integrity of an electrofusion joint. Proceedings of Plastics Pipes VIII, B2.##
[11]. Elsheikh, A. H. (2023). Applications of machine learning in friction stir welding: Prediction of joint properties, real-time control and tool failure diagnosis. Engineering Applications of Artificial Intelligence, 121, 105961. doi.org/10.1016/j.engappai.2023.105961.##
[12]. Najafabadi, M. K., & Hosseini, F. Optimization of Cooling Time of Polyethylene Electrofusion Joints in the Natural Gas Industry on the Basis of DSC Method with Computerized Simulation. Available at SSRN 4865276. Available at SSRN 4865276.##
[13]. Starostin, N. P., Vasileva, M. A., & Ammosova, O. A. (2019, November). Management of thermal process for polyethylene gas pipes welding with built-in heater. In Journal of Physics: Conference Series (Vol. 1392, No. 1, p. 012086). IOP Publishing. doi: 10.1088/1742-6596/1392/1/012086. ##
[14]. Sarambale, D. S., & Shinde, D. K. (2017). Electro-fusion joint failure polyethylene pipes analysis and its simulation using finite element analysis. International Journal of Mechanical and Production Engineering, 5(12), 51-55.##
[15]. Peacock, A. (2000). Handbook of polyethylene: structures: properties, and applications. CRC press..##
[16]. Alavijeh, M. S., Scott, R., Seviaryn, F., & Maev, R. G. (2022). Application of a chord transducer for ultrasonic detection and characterisation of defects in MDPE butt fusion joints. Insight-Non-Destructive Testing and Condition Monitoring, 64(10), 560-565. doi.org/10.1784/insi.2022.64.10.560.##
[17]. Gierulski, M. P., Tomlinson, R., & Troughton, M. (2022). Electrofusion welding and reinforced thermoplastic pipes–A review. Journal of Reinforced Plastics and Composites, 41(3-4), 147-163. doi.org/10.1177/07316844211051207.##
[18]. Mehrabi, H. A., & Bowman, J. (1997). Electrofusion welding of cross-linked polyethylene pipes. Iranian Polymer Journal, 6, 195-204.##
[19]. Shapheek, M., & Shrivastava, N. (2020). Optimization of cooling time for polyethylene fusion joints. Materials Today: Proceedings, 28, 1267-1272. doi.org/10.1016/j.matpr.2020.04.152.##
[20]. Cruz, E. D. D., Prasetyo, Y. T., Ayuwati, I. D., Cahigas, M. M. L., & Nadlifatin, R. (2024, December). A Conjoint Analysis on the Preference of Pipe Welding Materials and Procedures. In 2024 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 0058-0062). IEEE. ##
[21]. Gao, G., Tian, X., Luo, T., Li, C., & Gao, J. (2023, April). Study on Structural Aging and Gas Leakage Failure Behavior of Electrofusion Socket of Buried Polyethylene Gas Pipes. In Journal of Physics: Conference Series. 2468(1). 012119. IOP Publishing. ##
[22]. Zisopol, D. G., Minescu, M., Iacob, D. V., & Voicu, N. (2024). Study of the tensile strength and shore hardness behavior of PE100 SDR11 electrofusion welded and artificially aged pipes. Engineering, Technology & Applied Science Research, 14(3), 14566-14571. doi.org/10.48084/etasr.7444.##
[23]. An, M., Cui, B., & Duan, X. (2022, March). Preparation and applications of linear low-density polyethylene. In Journal of Physics: Conference Series (Vol. 2229, No. 1, p. 012009). IOP Publishing. doi: 10.1088/1742-6596/2229/1/012009. ##
[24]. Moini Jazani, O., Khalafi, R., Khosravi, M., Hassanpour, M.R., Dadkhah, D., Mostafaeian, M., Salehi, M.M. and Riazi, H., (2015). A Review of Manufacturing Process of Polyethylene Pipe and Connectors for Applying in High-Pressure Natural Gas Pipelines. Journal of Particle Science and Technology, 1(3), pp.129-140. doi:10.22104/jpst.2015.136.##
[25]. Bathaee, S. A., Nourouzi, S., Jamshidi Aval, H., & Seyf, S. (2018). Comparison and Study of Coating Properties of Three-layer Polyethylene, Polyurethane and Fusion Bonded Epoxy for Pipelines. Journal of Petroleum Research, 28(97-4), 139-150., doi: https://doi.org/10.22078/pr.2018.2837.2315.##
[26]. Pathak, S., & Pradhan, S. K. (2020). Experimentation and optimization of HDPE pipe electro fusion and butt fusion welding processes. Materials Today: Proceedings, 27, 2925-2929. doi.org/10.1016/j.matpr.2020.03.517.##
[27]. Chebbo, Z., Vincent, M., Boujlal, A., Gueugnaut, D., & Tillier, Y. (2015). Numerical and experimental study of the electrofusion welding process of polyethylene pipes. Polymer Engineering & Science, 55(1), 123-131. doi.org/10.1002/pen.23878.##
[28]. Wysocka-Fotek, O., Maj, M., & Oliferuk, W. (2015). Use of pulsed IR thermography for determination of size and depth of subsurface defect taking into account the shape of its cross-section area. Archives of Metallurgy and Materials, 60. doi:10.1515/amm-2015-0181.##
[29]. Onuegbu, G. C., & Onuoha, C. (2017). Transport behaviour of xylene through compatibilized low density polyethylene composite. European Journal of Engineering and Technology. 5(3). ISSN 2056-5860.##
[30]. Azad, M. J., & Tavallali, M. S. (2019). A novel computational supplement to an IR-thermography based non-destructive test of electrofusion polyethylene joints. Infrared Physics & Technology, 96, 30-38. doi.org/10.1016/j.infrared.2018.10.031.##
[31]. Mansouri, S., & Tavallali, M. S. (2019). Heat transfer approximate modeling, parameter estimation and thermography of thermal pulsing in electrofusion joints of gas pipelines. Infrared physics & technology, 98, 354-##