میزان‌سازی بهینه کنترلرهای برج تقطیر واکنشی تولید متیل ترشیو بوتیل اتر با استفاده از الگوریتم ژنتیک غیرمغلوبی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی شیمی، دانشگاه صنعتی ارومیه

2 دانشکده مهندسی مکانیک، دانشگاه صنعتی ارومیه

چکیده

کنترل برج‌های تقطیر واکنشی یکی از مشکلات اصلی پیش روی این نوع فرآیندها می‌باشد که دلایل اصلی آن غیرخطی بودن زیاد سیستم، برهم‌کنش‌های بسیار شدید، چندگانگی در شرایط پایدار، تاخیر زمانی، عدم قطعیت فرآیند و تعداد بالای ساختارهای ممکن کنترلی می‌باشد. از سوی دیگر محصولاتی مانند متیل ترشیوبوتیل اتر و اتیل ترشیوبوتیل اتر از جمله محصولات مهمی هستند که از این روش تولید می‌شوند. در این پژوهش برای بهینه‌سازی ضرایب کنترلرهای تناسبی- انتگرالی- مشتقی برج تولیدکننده محصول متیل ترشیوبوتیل اتر از الگوریتم ژنتیک چند تابعی استفاده شده است. برای این منظور ضرایب بهینه کنترلرها از طریق کمینه‌سازی دو تابع هدف میزان فرارفت و انتگرال کل خطاهای حاصل از کنترلرها با استفاده از الگوریتم ژنتیک غیر مغلوبی 2 تعیین شده است. نتایج عددی نشان می‌دهد که این الگوریتم دارای توانایی بسیار بالا در بهینه‌سازی ضرایب کنترلی فرآیندهای غیرخطی مانند تقطیر واکنشی تولید محصول متیل ترشیوبوتیل اتر در مقایسه با روش‌های قدیمی است.
 

کلیدواژه‌ها


عنوان مقاله [English]

Optimal Tuning of MTBE Reactive Distillation Tower Controllers Using NSGA-II

نویسندگان [English]

  • Alireza Behroozsarand 1
  • Rahim Hassanzadeh 2
1 Faculty of Chemical Engineering, Urmia University of Technology, Urmia
2 Faculty of Mechanical Engineering, Urmia University of Technology, Urmia
چکیده [English]

Control of reactive distillation (RD) column is a challenging task due to its high degree of non-linearity, strong interactions, steady state multiplicity, time delay, process uncertainties, and the large number of possible control configurations. On the other hand, important products such as methyl tertiary butyl ether and ether tertiary butyl are produced via this method. An optimal control of methyl tertiary butyl ether (MTBE) column is studied in this paper utilizing the Multiobjective Genetic Algorithm concept in conjunction of Proportional-Integral-Derivative (PID) controller. The novelty of the work is in the optimal tuning of PID controllers by minimizing of two objective functions (Overshoot and Integral of Absolute Error (IAE)) through Non-Dominated Sorting Genetic Algorithm-II (NSGA-II). Numerical results show that NSGA-II based tuning method has excellent ability in optimal control of MTBE RD column.
 

کلیدواژه‌ها [English]

  • MTBE
  • NSGA-II
  • PID controller
  • Optimization
  • Optimal Pareto
[1]. Katariya A. M., Moudgalya K. M. and Mahajani S. M., “Non-linear dynamic effects in reactive distillation for synthesis of TAME,” Ind. Eng. Chem. Res., Vol. 45 12, pp. 4233–4242, 2006.##

[2]. Luyben W. L., “Distillation design and control using ASPEN, Wiley-VCH,” New York, Chapter 9, pp. 232-250, 2006.##

[3]. Agreda V. H. and Partin L. R., “Reactive distillation process for the production of methyl acetate,” US Patent, 4435595, 1984.##

[4]. Smith L. A., “Chemical research and licensing company,” US Patent, 4307254, 1994.##

[5]. Thiel C., Sundmacher K. and Hoffmann U., “Synthesis of ETBE: residue curve maps for the heterogeneously catalysed reactive distillation process,” Chem. Eng. J., Vol. 66, pp. 181-191, 1997.##

[6]. Hickey T. P. and Adams J. R., “Multi-Purpose catalytic distillation column and etherification process using same,” US Patent, 5321163, 1994.##

[7]. Doherty M. F. and Malone M. F., “Conceptual design of distillation system,” NY: McGraw-Hill, New York, 2001.##

[8]. Sundmacher K. and Kienle A., “Reactive distillation: status and future directions,” Germany: Wiley-VCH, Weinheim, 2003.##

[9]. Taylor R. and Krishna R., “Modeling reactive distillation,” Chem. Eng. Sci., Vol. 55, pp. 5183-5229, 2002.##

[10]. Skogestad S. and Postlethwaite I., Multivariable feedback control, Second ed., John Wiley & Sons Ltd., 2005.##

[11]. Jacobs R., and Krishna R., “Multiple solutions in reactive distillation for methyl-tert-butyl ether synthesis,” I&EC, Vol. 32, pp. 1706-1709, 1993.##

[12]. Ciric A. R. and Gu D., “Synthesis of non-equilibrium reactive distillation processes by MINLP optimization,” AIChE J., Vol. 40, pp. 1479-1487, 1994.##

[13]. Chen F., Huss R. S., Doherty M. F, and Malone M. F., “Multiple steady states in reactive distillation: kinetic effects,” Comput. Chem. Eng., Vol. 26, pp. 81-93, 2002.##

[14]. Singh B. P., Singh R., Kumar M. V. P. and Kaistha N., “Steady state analysis for reactive distillation control: an MTBE case study,” J. Loss. Prev. Proc. Ind., Vol. 18, pp. 283-292, 2005.##

[15]. Suresh Babu K., Pavan Kumar M. V. and Kaistha N., “Controllable optimized designs of an ideal reactive distillation system using genetic algorithm,” Chem. Eng. Sci., Vol. 64 (23), pp. 4929-4942, 2009.##

[16]. Hung S. B., Lee M. J., Tang Y. T., Chen Y. W., Lai I. K., Hung W. J., Huang H. P. and Yu C. V., “Control of Different Reactive Distillation Configureurations,” AIChE J., Vol. 52, pp. 1423-1440, 2005.##

[17]. Al-Arfaj M. A. and Luyben W. L., “Comparison of alternative control structures for an ideal two-product reactive distillation column,” I&EC., Vol. 39, pp. 3298-3307, 2000.##

[18]. Al-Arfaj, M. A., Luyben, W. L., “Comparative control study of ideal and methyl acetate reactive distillation,” Chem. Eng. Sci., Vol. 57, pp. 5039-5050, . 2002a.##

[19]. Al-Arfaj M. A. and Luyben W. L., “Design and control of olefin metathesis reactive distillation column,” Chem. Eng. Sci., Vol. 57, pp. 715, 2002b.##

[20]. Al-Arfaj M. A. and Luyben W. L., “Control of ethylene glycol reactive distillation column,” AIChE J., Vol. 48, pp. 905-908, 2002c.##

[21]. Al-Arfaj M. A. and Luyben W. L., “Control study of ETBE reactive distillation,” I&EC., Vol. 41, pp. 3784-3796, 2002d.##

[22]. Al-Arfaj M. A. and Luyben W. L., “Plant wide control for TAME production using reactive distillation,” AIChE J., Vol. 50, pp. 1462-1473, 2004. [23]. Wang S. J. and Wong D. S. H., “Control of reactive distillation production of high-purity isopropanol,” J. Process Control, Vol. 16, pp. 385-394, 2006.##

[24]. Astrom K. and Hagglund T., PID Controllers: theory, design, and tuning, 2nd ed. Instrument Society of America, Research Triangle Park, NC., 1995.##

[25]. Herreros A., Baeyens E. and Peran J. R., “Design of PID-type controllers using multiobjective genetic algorithms,” ISA Trans., Vol. 41, pp. 457-472, 2002.##

[26]. Blasco Xavier F., Martínez M., Senent J. and Sanchis J., Sistemas automáticos, Editorial U.P.V., 2000.##

[27]. Marlin T. E., “Process control, designing processes and control systems for dynamic performance,” McGraw-Hill, New York, 1995.##

[28]. Smith L. A., “Catalytic distillation process and catalyst,” European Patent Application,” EP8860, 1980.##

[29]. Satyanarayana T. and Saha P., “Modeling and control structure selection for reactive distillation process using Aspen custom modeler,” CHEMCON, New Delhi, 2005.##

[30]. Rehfinger A. and Hoffmann U., “Kinetics of methyl tertiary butyl ether liquid phase synthesis catalyzed by ion exchange resinI. Intrinsic rate expression in liquid phase activities,” Chem. Eng. Sci., Vol. 45, pp. 1605-1617, 1990. [31]. Bingul Z., “Adaptive genetic algorithms applied to dynamic multiobjective problems,” Appl. Soft. Comput., Vol. 7, pp. 791-799, 2007.##

[32]. Holland J. H., “Adaptation in natural and artificial systems,” University of Michigan Press.##

[33]. Weile D. S., Michielssen E. and Goldberg D. E., “Genetic algorithm design of pareto optimal broad band microwave absorbers,” I.T.E.l.C. IEEE., Vol. 38, pp. 518-525, 1975.##

[34]. Coello C. A. C., “Evolutionary multiobjective optimization: a historical view of the field,” IEEE Computational Intelligence Magazine, Vol.1(1), pp. 28-36, 2006b.##

[35]. Horn J. and Nafpliotis N., “Goldberg DE A niched Pareto genetic algorithm for multiobjective optimization,” In: Evolutionary Computation, IEEE World Congress on Computational Intelligence., Proceedings of the First IEEE Conference on, IEEE, pp. 82-87, 1994.##

[36]. Jones A. and De Moura Oliveira P., “Genetic autotuning of PID controller,” In Proceedings of the First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, Sheffield, UK, IEE, No. 141, pp. 141–145, 1995.##

[37]. Schaffer J. D., “Multiple objective optimization with vector evaluated genetic algorithms,” Proc. 1st ICGA, Carnegie-Mellon University, USA, pp. 93-100, 1985.##

[38]. Fonseca C. M. and Fleming P. J., “Multiobjective genetic algorithms,” In: IEE Colloquium on Genetic Algorithms for Control Systems Engineering, Digest No. 1993/130, Vol. 28, London, UK, IEE, 1993.##

[39]. Hajela P. and lin C.y., “Genetic search strategies in multicriterion optimal desig, struct optimization,” Vol.4 (2), pp. 99–107, 1992.##

[40]. Murata T. and Ishibuchi H., MOGA: Multiobjective genetic algorithms, Proc. 2nd IEEE ICEC (Perth Austra lia), pp. 289-294, 1995.##

[41]. Srinivas N. and Deb K., “Multiobjective optimization using nondominated sorting in genetic algorithms,” J. Evol. Comput. Vol. 2 (3), pp. 221–248, 1994.##

[42]. Zitzler E. and Thiele L., “Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach,” IEEE Trans. Evol. Comput., Vol. 3 (4), p. 257, 1999.##

[43]. Zitzler E., Laumanns M. and Thiele L., “SPEA2: improving the strength Pareto evolutionary algorithm,” Swiss Federal Institute Technology: Zurich, Switzerland, 2001.##

[44]. Come D. W., Knowles J. D. and Oates M. J., “The pareto envelope-based selection algorithm for multiobjective optimization,” In: Proceedings of Sixth International Conference on Parallel Problem Solving from Nature, Paris, France: Springer, 2000.##

[45]. Knowles J. D. and Corne D. W., “Approximating the nondominated front using the Pareto archived evolution strategy,” Evol. Comput., Vol. 8 (2), p. 149, 2000.##

[46]. Knowles J. and Corne D., “Memetic algorithms for multiobjective optimization: issues, methods and prospects,” In Recent Advances in Memetic Algorithms. Krasnogor, N., Smith, J.E., and Hart, W.E. (eds), pp. 313-352, Springer, 2004.##

[47]. Come D. W., Jerram N. R., Knowles J. and Oates J., “PESA-II: region-based selection in evolutionary multiob jective optimization,” In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), San Francisco, CA, 2001.##

[48]. Deb K., Pratap A., Agarwal S. and Meyarivan T., “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., Vol. 6 (2), p. 182, 2002.##

[49]. Sarker R., Liang K. H. and Newton C., “A new multiobjective evolutionary algorithm,” Eur. J. Oper. Res., Vol. 140(1), pp. 12–23, 2002.##

[50]. Coello C. A. C. and Pulido G. T., “A micro-genetic algorithm for Multiobjective optimization,” In Evolutionary Multi-criterion Optimization, First International Conference, EMO 2001, Zurich, Switzerland: Springer, 2001.##

[51]. Lu H. and Yen G. G., “Rank-density-based multiobjective genetic algorithm and benchmark test function study,” IEEE Trans. Evol. Comput. Vol. 7 (4), p. 325, 2003.##

[52]. Yen G. G. and Lu H., “Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation,” IEEE Trans. Evol. Comput. Vol. 7 (3), p. 253, 2003.##