ارزیابی عدم قطعیت در پیش‌بینی ضریب بازیافت از مخازن گازی تحت رانش آب

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مدیریت مهندسی نفت و گاز – شرکت نفت و گاز پارس - شرکت ملی نفت ایران

2 انستیتو مهندسی نفت - دانشکده مهندسی شیمی – دانشکده فنی - دانشگاه تهران

3 پژوهشکده ازدیاد برداشت از مخازن نفت و گاز- شرکت ملی نفت ایران

چکیده

سرمایه‌گذاری در صنعت نفت به دلیل عدم قطعیت‌های موجود در پیش‌بینی عملکرد مخزن همواره با ریسک مواجه بوده است. بنابراین سرمایه‌گذاران نیاز به برآورد دقیق میزان عدم قطعیت موجود جهت کاهش ریسک سرمایه‌گذاری در این صنعت هستند. روش‌های آماری تجزیه و تحلیل ریسک در صنعت نفت به دلیل پیش فرض‌های مختلف با محدودیت‌هایی روبروست. در این مقاله با استفاده از چهار روش مختلف مشتمل بر: 1- تئوری طراحی تجربی و متدولوژی سطح پاسخ، 2- درخت ادراک چندگانه، 3- فاکتور تغییرات نسبی و در نهایت 4- روش عدم تطابق یکپارچه؛ عدم قطعیت موجود در ضریب بازیافت گاز از مخازن گازی تحت رانش آب مورد بررسی قرار می‌گیرد. این مطالعه نشان می‌دهد که بیشترین عدم قطعیت در تخمین ضریب بازیافت گاز ناشی از فاکتورهای تراوایی مخزن، فشار سرچاهی، تراوایی سفره آب و قطر لوله مغزی می‌باشد: لذا با کاهش عدم قطعیت در محاسبه این چهار فاکتور می‌توان ریسک سرمایه‌گذاری در این مخازن را کاهش داد. همچنین روش درخت ادراک چندگانه در تخمین محتمل‌ترین میزان بازیافت گاز نسبت به سه روش دیگر از دقت بسیار بالایی(خطای نسبی کمتر از 3%) برخوردار است.
 

کلیدواژه‌ها


عنوان مقاله [English]

Uncertainty Assessment in the Prediction of Recovery Factor from Water Drive Gas Reservoirs

چکیده [English]

Capital investment in the petroleum industry had been constantly faced with the risk due to uncertainties in the prediction of reservoir performance. So investors need accurate estimates of the uncertainties to reduce the investment risk in this industry. Statistical methods of risk analysis in petroleum industry are faced with limitations because of various assumptions. In this paper, uncertainty of gas recovery factor from water drive gas reservoirs will be investigated using four different methods including: (1) experimental design theory and response surface methodology, (2) multiple realization tree, (3) relative variation factor and finally (4) integrated mismatch method. This study shows that the greatest uncertainty in estimating the gas recovery factor of these reservoirs is associated with reservoir permeability, wellhead pressure, aquifer permeability and tubing diameter and therefore by reducing the uncertainty in the calculation of these four factors, investment risk can be reduced. Also a multiple realization tree method has high accuracy (relative error less than 3%) with respect to the other three methods in estimation of most probable valve of gas recovery factor.
 

کلیدواژه‌ها [English]

  • Uncertainty
  • Experimental Design Theory and Response Surface Methodology
  • Multiple Realization tree
  • Relative Variation Factor
  • Integrated Mismatch Method

[1]. Geffen T. M., Parrish D. R., Haynes G. W. and Morse R. A., “Efficiency of gas displacement from porous media by liquid flooding,” Trans., AIME, Vol. 195, pp. 29-38, 1952.##

[2]. Naar J. and Henderson J. H., “An imbibition model – its application to flow behavior and the prediction of oil/gas recovery,” SPE Journal, Vol. 1, No. 2, Jun. 1961.##

[3]. Naar J., J. Henderson H. and Wygal R. J., “A wettability model for consolidated sand,” SPE Journal, 1962.##

[4]. Al-Hashim H. S., “Effect of aquifer size on the performance of partial water drive gas reservoirs, SPE 13233, SPE Reservoir Engineering, pp. 380-386, May 1998.##

[5]. Cohen M. F., “Recovery optimization in a bottom/edge water-drive gas reservoir, soehlingen schneverdingen,” SPE 19068 Presented at the SPE Gas Technology Symposium held in Dallas, TX, Jun. 7-9, 1989.##

[6]. Hower T. L. and Jones R. E., “Predicting recovery of gas reservoirs under Water drive conditions,” SPE 22937, SPE 66th Annual Conference and Exhibition held in Dallas, TX, 6-9 Oct. 1991.##

[7]. Lies H. K., “Aquifer influx modeling for gas reservoirs,” SPE 127497, Canadian International Petroleum Conference, Calgary, Alberta, Jun. 4 - 8, 2000.##

[8]. Caldwell R. H. and Heather D. I., “Characterizing uncertainty in oil and gas evaluations,” Paper SPE 68592, SPE Hydrocarbon Economics and Evaluation Symposium, Dallas, 2–3 Apr. 2001.##

[9]. Armenta M., A. Wojtanowicz K., “Incremental recovery using dual-completed wells in gas reservoirs with bottom water drive: a feasibility study,” Journal of Canadian Petroleum Technology, Vol. 44, No. 6, Jun. 2005.##

[10]. Armenta M. and Wojtanowicz A., “Severity of water coning in gas wells,” SPE 75720, SPE Gas Technology Symposium held in Calgary, Alberta, Canada, 30 Apr. 2, May 2002.##

[11]. M. Armenta C. D. White A. K. Wojtanowicz, “Completion length optimization in gas wells,” Canadian International Petroleum Conference, Calgary, Alberta, Jun. 10 - 12, 2003.##

[12]. Deepak D., and Hui Gao,. “Integrated uncertainty assessment for unconventional gas reservoir project development,” paper SPE 111203, SPE Eastern Regional Meeting, USA, 17-19 Oct. 2007.##

[13]. Sech R. P., Jackson M. D., and Hampson G., “Controls on water cresting in high productivity horizontal gas wells,” Paper SPE 107169-MS, EUROPEC/EAGE Conference and Exhibition, London, U.K, 11-14 Jun. 2007.##

[14]. Li M., Yang W. J., and Xiao Q. Y., “Determination of the aquifer activity level and the recovery of water drive gas reservoir,” paper SPE 127497, North Africa Technical Conference and Exhibition, Cairo, Egypt, 14-17 Feb. 2010.##

[15]. Lee A. L., Gonzalez M. H., and Eakin B. E., “The viscosity of natural gases,” JTP, pp. 997–1000, Aug. 1966.##

[16]. Dranchuk P. M., Purvis R. A., and Robison D. B., “Computer calculations of natural gas compressibility factors using the standing and katz correlation,” Institute of Petroleum Technical Series, No. IP 74-008, 1974.##

[17]. Petalas N., and Aziz K, “A mechanistic model for multiphase flow in pipes,” JCPT, 39 6, pp. 43-55 2000.##

[18]. Capen E. C., “The difficulty of assessing uncertainty,” paper SPE 5579, SPE-AIME Annual Technical Conference and Exhibition, Dallas, 28 Sep. – 1 Oct. 1975.##

[19]. Garb F. A., “Assessing risk and uncertainty in evaluation hydrocarbon producing properties,” paper SPE 15921, SPE Eastern Regional Meeting, Columbus, Ohio, 12 – 14 Nov., 1986.##

[20]. Myers R. H. and Montgomery D. C., “Response surface methodology: process improvement with steepest ascent, the analysis of response Surfaces, experimental designs for fitting response surfaces,” pp. 183-351. New York: John Wiley and Sons, Inc, 1995.##

[21]. Myers R. H. and Montgomery D. C., “Response surface methodology: process and product optimization using designed experiment,” A Wiley-Interscience Publication, 2002.##

[22]. Kathleen M. C, Natalia Y. K, Reminga Je., “Response Surface Methodology,” Technical Report, CMU-ISRI-04-136, Oct. 2004.##

[23]. Zhang G., “Estimating uncertainties in integrated reservoir studies,” PhD Dissertation, Office of Graduate Studies of Texas A&M University, Dec. 2003.##

[24]. White C. D., Willis B. J., Narayanan K. and Dutton S. P., “Identifying and Estimating Significant Geologic Parameters With Experimental Design,” SPEJ, 311, Sep. 2001.##

[25]. Venkataraman R., “Application of the method of experimental design to quantify uncertainty in production profiles,” BHP Petroleum, London SPE 59422.##

[26]. Peake W. T., Abadah M. and Skander L., “Uncertainty assessment using experimental design: minagish oolite reservoir”, SPE 91820, SPE Reservoir Simulation Symposium, USA. 31 Jan. – 2 Feb. 2005.##

[27]. Murtha J. A., “Incorporating historical data in monte carlo simulation,” SPE 26245, Petroleum Computer Conference, New Orleans, 11 – 14 July. 1993##

[28]. Steagall D. E. and Schiozer D. J., “Uncertainty analysis in reservoir production forecasts during appraisal and pilot production phases,” SPE 66399, Reservoir Simulation Symposium, Houston, 11 – 14 Feb. 2001.##

[29]. Twartz S. K., Gorjy F. and Milne I. G., “A multiple realization approach to managing uncertainty in the North Rankin gas condensate field,” Western Australia, SPE 50078, Oil & Gas Conference and Exhibition, Australia, 12 – 14 Oct., 1998.##