حذف فنل از محیط‎های آبی توسط نانوجاذب‎های کربنی: مطالعه عوامل مؤثر و سینتیک فرآیند جذب

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده منابع طبیعی و محیط زیست دانشگاه ملایر، ایران

2 دانشکده منابع طبیعی و محیط زیست دانشگاه ملایر، ایران/پژوهشکده محیط زیست و بیوتکنولوژی، پژوهشگاه صنعت نفت، تهران، ایران

3 پژوهشکده محیط زیست و بیوتکنولوژی، پژوهشگاه صنعت نفت، تهران، ایران

10.22078/pr.2018.3346.2542

چکیده

فنل و مشتقات آن به‎دلیل سمیت، سرطان‎زایی و تجزیه بیولوژیکی کم، از آلاینده‌های مهم اکوسیستم‌های آبی محسوب می‌شود. هدف مطالعه حاضر مقایسه سه جاذب نانوساختار کربنی در جذب فنل از محیط آبی و مطالعه سینتیکی حذف آن است. در این پژوهش، ابتدا جاذب‎های گرافن، کربن مزوپور (CMK-3) و نانولوله کربنی چند‎دیواره (MWCNT) سنتز شده و سپس براساس روش‎های استاندارد XRD ،SEM، BET و BJH ساختار آنها ارزیابی شد. در گام بعد عوامل مؤثر بر فرآیند جذب مانند میزان بارگذاری جاذب، pH محلول و زمان تماس بررسی گردید. جهت پیش‌بینی رفتار سنتیکی جاذب‎ها نیز از مدل‎های شبه درجه یک، شبه درجه دو و الوویچ استفاده شد. نتایج نشان داد که با افزایش بارگذاری جاذب، راندمان جذب افزایش و ظرفیت جاذب‎ها، روند کاهشی دارد که در هر دو حالت این تغییرات به‎صورت غیرخطی می‌باشد. بررسی تغییرات pH نشان داد که بالاترین درصد حذف برای جاذب‎های گرافن، CMK-3 و MWCNT در pH برابر 8 اتفاق می‌افتد. در بررسی اثر زمان تماس مشخص گردید برای هر سه جاذب زمان بهینه جهت اشباع سایت‌های فعال جذب حدود min 40 است و زمان بیشتر تغییر چندانی در راندمان فرآیند نخواهد داشت. نتایج بررسی سینتیکی فرآیند نشان دهنده تطبیق بسیار خوب مدل شبه درجه دو بر داده‌های آزمایشگاهی است. براساس نتایج تجربی این پژوهش مکانیزم جذب مورد بحث قرار گرفت و مشخص گردید علاوه‎بر تعاملات π-π در تمامی جاذب‎ها، نیروی قوی بین فنل و ناخالصی مس موجود در MWCNT و نیز پیوند قوی هیدروژنی بین فنل و گروه‎های هیدروکسیل/کربوکسیل موجود در ساختار CMK-3 عوامل مهم فرآیند جذب فنل هستند. در بین جاذب‎های بررسی شده، CMK-3 به‎دلیل عملکرد و کارایی بالاتر به‎عنوان جاذب بهینه برای حذف فنل از محیط‎های آبی انتخاب گردید.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Phenol Removal from Aquatic Solution Using Three Carbon Nanostructured Adsorbents: Investigation of the Effective Parameters and Adsorption Kinetic

نویسندگان [English]

  • Eisa Solgi 1
  • Akram Hosseinnia 2
  • saeideh tasharrofi 3
  • Hossein Taghdisian 3
1 Faculty of Natural Resources Environment, Malayer University, Iran
2 Faculty of Natural Resources Environment, Malayer University, IranEnvironment and Biotechnology Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
3 Environment and Biotechnology Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
چکیده [English]

Phenol and its derivatives are considered as one of the major environmental pollutants especially in aquatic ecosystems due to its toxicity, carcinogenic effect, and low biological degradation. The aim of the present work is to compare three carbon nanoadsorbent in phenol removal from water and to investigate adsorption kinetics. In this regard, Graphene, CMK-3, and multi-wall carbon nanotube (MWCNT) were selected while several techniques such as X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), Barrett-Joyner-Halenda (BJH) and scanning electron microscope (SEM) were used to characterize the adsorbents. In the next step, the effective factors on the adsorption process, i.e. adsorbent dose, pH, and contact time were studied. Moreover, the kinetics of the phenol sorption process were tested using the Pseudo-first-order, Pseudo-second-order, and Elovich models. The results have shown that increasing the amount of adsorbent loading leads to increase the adsorption efficiency and decrease in adsorption capacity, both variations indicating nonlinear behavior. Furthermore, the highest removal for graphene, MWCNT and CMK-3 was observed at pH 8. It has also been found that the optimum time to saturate adsorption active sites is about 40 minutes, and more contact time does not change the process efficiency. In addition, kinetic study has indicated that for all adsorbents, pseudo second order model has fitted better the experimental data than Pseudo first order and Elovich models. The adsorption mechanism was discussed based on experimental results. The results have indicated that for all adsorbents, the π-π interactions is an important parameter whereas in the case of MWCNT, strong force between phenol and copper impurities; moreover, in the case of CMK-3, strong hydrogen bond between phenol and hydroxyl/carboxyl groups are important parameters in in the adsorption process. Finally, among the adsorbents, CMK-3 has been selected as the optimum adsorbent for phenol removal due to its higher yield and efficiency.
 

کلیدواژه‌ها [English]

  • Phenol
  • Waste Water
  • Adsorption
  • Carbonaceous Nanostructured
  • Adsorption Kinetic

[1]. Chiou C. H. W., C. Y. and Juang R. S., “Photocatalytic degradation of phenol and m-nitrophenol using irradiated TiO2 in aqueous solutions,” Separation and Purification Technology, Vol. 62, pp. 559-564, 2008.##

[2]. Litter M. Q. N., “Photochemical advanced oxidation processes for water and wastewater treatment,” Vol. 4, No. 3, pp. 217-241, 2010.##

[3]. GHandi S., Reza M.  and Harati R., “Simultaneous removal of phenol and cadmium by using titanium dioxide nanoparticles in nano-photocatalytic process UV/TiO2 from aqueous solution: a kinetic study,” Scientific Journal of Ilam University of Medical Sciences, Vol. 24, No. 1, pp. 76-88, 2016.##

[4]. Shokohi, R., Samarghandi M. R, Pourfarzi F, Shirzad Siboni M and Vahedi H, “Removal of reactive black 5 (rb5) dye from aquatic solution by using of adsorption onto synthesized sodiumalginate magnetic beads,” Iranian Journal of Health and Environment, Vol. 4, No. 1, pp. 1-10, 2011.##

[5]. Akbari Jonoush Z., Farzadkia M. and Dadban Shahamat Y., “Rapid removal of phenol from aqueous solutions by AC_Fe3O4 nano-composite: Kinetics and equilibrium studies,” Journal of Mazandaran University of Medical Sciences, Vol. 24, No. 122, pp. 158-168, 2015.##

[6]. Babuponnusami A. and Muthukumar K., “Degradation of phenol in aqueous solution by fenton, sonofenton and sonophotofenton methods,” Clean–Soil, Air, Water, Vol. 39, No. 2, pp. 142-147, 2011.##

[7]. Kakavandi B., Mokhtari M., Rezaee Kalantari R., Ahmadi E., Rastkari N., Fatehi M., Azari A., “Synthesis and efficiency evaluation of magnetic nanocomposite of activated carbon- zero valent iron/silver (PAC-Feº/Ag) in phenol removal from aqueous solution,” Iranian Journal of Health and Environment, Vol. 7, No. 3, pp. 399-412, 2014.##

[8]. Senturk, H. B., Ozdes D., Gundogdu A., Duran C. and Soylak M., “Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study,” Journal of Hazardous Materials, 172, 1, p. 353-362, 2009.##

[9]. Bayramoglu G., Ozdes D., Gundogdu A., Duran C. and Soylak M., “Biosorption of phenol and 2-chlorophenol by Funalia trogii pellets,” Bioresource technology, Vol. 100, No. 10, pp. 2685-2691, 2009.##

[10]. Khosravi R., G. Moussavi and Roudbar Mohammadi S., “Removal of high concentration of phenol from synthetic solutions by fusarium culmorum granules,” Iranian Journal of Health and Environment, Vol. 4, No. 4, pp. 451-460, 2012.##

[11]. Kakavandi B., Rezaee Kalantari M., Ahmadi E., Rastkari N., Fatehi M. and Azari A., “Synthesis and efficiency evaluation of magnetic nanocomposite of activated carbon- zero valent iron/silver (PAC-Feº/Ag) in phenol removal from aqueous solution,” Iranian Journal of Health and Environment, Vol. 7, No. 3, pp. 399-412, 2014.##

[12]. Kilic M., Apaydin-Varol E. and Pütün A. E., “Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: Equilibrium, kinetics and thermodynamics,” Journal of Hazardous Materials, Vol. 189, Issues 1–2, pp. 397-403, 2011.##

[13]. Rengaraj S., Moon S. H., Sivabalan R., Arabindoo B. and Murugesan V., “Removal of phenol from aqueous solution and resin manufacturing industry wastewater using an agricultural waste: rubber seed coat,” Journal of Hazardous Materials, Vol. 89, Issues 2-3, pp. 185-196, 2002.##

[14]. Sharma, V. and A. Sharma, “Nanotechnology: an emerging future trend in wastewater treatment with its innovative products and processes,” Nanotechnology, Vol. 1, No. 2, 2012.##

[15]. Dan, A., Fujii D., Soda S., Machimura Ta. and Ike M., “Removal of phenol, bisphenol A, and 4-tert-butylphenol from synthetic landfill leachate by vertical flow constructed wetlands,” Science of the Total Environment, Vol. 578: pp. 566-576, 2017.##

[16]. Liu, Q. S., Zheng T., Wang P., Jiang J. P. and Li N., “Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers,” Chemical Engineering Journal, Vol. 157, Issues 2-3, pp. 348-356, 2010.##

[17]. Vaiano, V., Matarangolo M., Murcia J. J., Rojas H., Navío J. A. and Hidalgo M. C., “Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag,” Applied Catalysis B: Environmental, Vol. 225, pp. 197-206, 2018.##

[18]. Atafar Z., Mesdaghinia A. R., Nouri J., Homaee M., Yunesian M., Ahmadimoghaddam M. and Mahvi A. H., “Effect of fertilizer application on soil heavy metal concentration,” Environmental Monitoring and Assessment, Vol. 160. pp. 83-89, 2009.##

[19. Savage N. and Diallo M. S., “Nanomaterials and water purification: opportunities and challenges,” Journal of Nanoparticle Research, Vol. 7, No. 4, pp. 331-342, 2005.##

[20]. Kabbashi, N.A., A Atieh M., Al-Mamun A., ES Mirghami M., Alam M. D. Z. and Yahya N., “Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution,” Journal of Environmental Sciences, Vol. 21, No. 4, pp. 539-544, 2009.##

[21]. Abussaud, B., Asmaly H. A., Ihsanullah, Tawfik A. S., Gupta V. K., laoui T. and Atieh M. A., “Sorption of phenol from waters on activated carbon impregnated with iron oxide, aluminum oxide and titanium oxide,” Journal of Molecular Liquids, Vol. 213, pp. 351-359, 2016.##

[22]. De la Luz-Asunción M., Martínez-Hernández A. L., Castaño V. M. and Velasco-Santos C., “Adsorption of phenol from aqueous solutions by carbon nanomaterials of one and two dimensions: kinetic and equilibrium studies,” Journal of Nanomaterials, Vol. 16, Issue 1, p. 422, 2015.##

[23]. Rodrigues L. A., Caetano Pinto da Silva M. L., Alvarez-Mendes M. O., dos Reis Coutinho A. and Patrocínio Thim G., “Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds,” Chemical Engineering Journal, Vol. 174, No. 1, pp. 49-57, 2011.##

[24]. Abdel Ghani N. T., El-Chaghaby G. A. and Helal F. S., “Individual and competitive adsorption of phenol and

nickel onto multiwalled carbon nanotubes,” Journal of Advanced Research, Vol. 6, No. 3, pp. 405-415, 2015.##

[25]. Elyassi M., Rashidi A., Hantehzadeh M. R. and Elahi S. M., “Preparation of different graphene nanostructures for hydrogen adsorption,” Surface and Interface Analysis, 2016.##

[26]. Samiee L., et al., “Adsorption of naphthalene by carbon mesoporous (cmk-3) from aqueous solutions,” Journal of Applied Chemical Science International, Vol. 7, No. 3, pp. 168-180, 2016.##

[27]. Lotfi R., Rashidi A. M. and Mohsennia M., “A rigorous comparison of methods for multi-walled carbon nanotubes purification using raman spectroscopy,” Journal of Petroleum Science and Technology, Vol. 4, No. 1, pp. 57-62, 2014.##

[28]. Liu H., Hu Ch. and Qu J., “Coagulation of humic acid by PACl with high content of Al13: The role of aluminum speciation,” Separation and Purification Technology, Vol. 70, No. 2, pp. 225-230, 2009.##

[29]. Reddad Z., Gerente C., Andres Y. and Cloirec P. L., “Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies,” Environmental Science & Technology, Vol. 36, No. 9, pp. 2067-2073, 2002.##

[30]. Fierro, V., Torné-Fernández V., Montané D. and Celzard A., “Adsorption of phenol onto activated carbons having different textural and surface properties,” Microporous and Mesoporous Materials, Vol. 111, Issue. 1-3, pp. 276-284, 2008.##

[31]. Wang, J., Zhou H., Zhuanga J. and Liu Q., “Magnetic γ-Fe2O3, Fe3O4, and Fe nanoparticles confined within ordered mesoporous carbons as efficient microwave absorbers,” Physical Chemistry Chemical Physics, Vol. 17, No. 5, pp. 3802-3812, 2015.##

[32]. Wu, F., Huang R., Mu D., Shen X. and Wu B., “A novel composite with highly dispersed Fe3O4 nanocrystals on ordered mesoporous carbon as an anode for lithium ion batteries,” Journal of Alloys and Compounds, Vol. 585, pp. 783-789, 2014.##

[33]. Worch E., “Adsorption technology in water treatment fundamentals, processes, and modeling,” Germany: DE GRUYTER. 235, 2012.##

[34]. Ezzeddine Z., Batonneau-Gener I., Pouilloux Y. and Hamad H., “Removal of methylene blue by mesoporous CMK-3: Kinetics, isotherms and thermodynamics,” Journal of Molecular Liquids, Vol. 223, pp. 763-770, 2016.##

[35]. Zuccaro L., Krieg J., Desideri A., Kern K. and Balasubramanian K., “Tuning the isoelectric point of graphene by electrochemical functionalization,” Scientific Reports, Vol. 5, p. 11794, 2015.##