Unsupervised Seismic Data Classification Using Gaussian Mixture Models

Document Type : Research Paper

Authors

1 Petroleum and Chemistry Engineering Department, Islamic Azad University, Electronic Campus, Tehran, Iran

2 Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Iran.

3 Research Institute of Applied Sciences (ACECR), Tehran, Iran

Abstract

Seismic facies analysis plays an important role in the studies of hydrocarbon reservoirs. Because in the beginning of exploration operations of hydrocarbon reservoirs, there is no or low number of wells in the area, the lateral changes and seismic facies analysis in a special horizon can be studied using pattern recognition algorithms and seismic attributes. Supervised and unsupervised methods have an important role in increasing the accuracy and the speed and decreasing the costs of data classification which a good analysis of seismic facies can be provided. The base of unsupervised methods, which is also the subject of this study, is the classification of all data in attribute space, and the result does not depend on prior information. In this method, the classification and interpretation of results are carried out by matching analysis between seismic facies, without using well data. There are several methods of unsupervised clustering. In this paper, the Gaussian Mixture Models (GMM) method has been employed which it uses some gaussian distributions and assigns membership probability to analysis samples in order to classify them. By using this method, seismic facies analysis is processed on a 3D seismic data set acquired in a hydrocarbon field in south of Iran. The analysis is carried out on two different horizons where the results show an acceptable facies classification by the GMM method, and the results are in a good agreement with reservoir quality analysis of electrofacies in some wells.
 

Keywords


[1]. Mitchum RM (1988) Glossary of terms used in seismic stratigraphy, AAPGMemoir 26, 205–212: 1977.##
[2]. Dumay J, Fournier F (2005) Multivariate statistical analyses applied to seismic facies recognition, Geophysics, 60, 1437-1450. ##
[3]. Saggaf MM, Toksöz MN, Marhoon MI (2003) Seismic facies classification and identification by competitive neural networks, Geophysics 68: 1984–1999. ##
[4]. Duda RO, Hart PO, Stork DG (2001) Pattern classification, 2nd ed. John Wiley & Sons. ##
[5]. Taner MT, Koehler F, Sheriff RE (1979) Complex seismic trace analysis, Geophysics 44: 1041–1063. ##
[6]. Balch AH (1971) Color sonagrams, A new dimension in seismic data interpretation, Geophysics 36, 1074–1098. ##
[7]. Sonneland L (1983) Computer aided interpretation of seismic data, 53rd Annual International Meeting, SEG, Expanded Abstracts 546–549. ##
[8]. Justice JH, Hawkins DJ, Wong DJ (1985) Multidimensional attribute analysis and pattern recognition for seismic interpretation, Pattern Recognition 18: 391–399. ##
[9]. Barnes AE, Laughlin KJ (2002) Investigation of methods for unsupervised classification of seismic data, 72nd Annual International Meeting, SEG, Expanded Abstracts 2221–2224. ##
[10]. Zhao T, Jayaram V, Roy A, Marfurt KJ (2015) A comparison of classification techniques for seismic facies recognition,”: Interpretation 3, SAE29-SAE58. ##
[11]. Chopra S, Marfurt KJ (2018) Seismic facies classification using some unsupervised machine learning methods,” 2018 SEG Convention at Anaheim, California. ##
[12]. Hadiloo S, Mirzaei S, Hashemi H, Beiranvand B (2018) Comparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps, Geopersia 8:1, 27-34. ##
[13]. MacQueen J (1967) Some methods for classification and analysis of multivariate observations, in L. M. Le Cam, and J. Neyman, eds.,Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press 281–297. ##
[14]. Ferreira DJA, Lupinacci WM, de Andrade Neves I, Zambrini JPR, Ferrari AL, Gamboa LAP, Azul MO (2019) Unsupervised seismic facies classification applied to a presalt carbonate reservoir, Santos Basin, offshore Brazil, AAPG Bulletin 103:4, 997-1012. ##
[15]. Coleou T, Poupon M, Azbel K (2003) Unsupervised seismic facies classification: A review and comparison of techniques and implementation, The Leading Edge 22, 942–953. ##
[15]. Coleou T, Poupon M, Azbel K (2003) Unsupervised seismic facies classification: A review and comparison of techniques and implementation, The Leading Edge 22, 942–953. ##
[16] Barnes A E (2015) Redundant and useless seismic attributes, Geophysics 72, P33-P38, 2007. ##
[17]. Roden R, Smith T, Sacrey D (2015) Geologic Pattern Recognition from seismic attributes: principal component analysis and self-organizing maps, Interpretation 3, SAE59-SAE83. ##
[18]. Gao D (2007) Application of three-dimensional seismic texture analysis with special reference to deep-marine facies discrimination and interpretation: An example from offshore Angola, West Africa, AAPG Bulletin 91, 1665–1683. ##
[19]. Qian F, Yin M, Liu XY, Wang YJ, Lu C, Hu GM (2018) Unsupervised seismic facies analysis via deep convolutional autoencoders, Geophysics 83, 3: A39-A43. ##
[20]. Bishop CM, Svensen M, Williams CKI (1998) The generative topographic mapping, Neural Computation, 10: 1, 215-234. ##
[21]. Roy A (2013) Latent space classification of seismic facies, Ph.D. Dissertation, The University of Oklahoma, 212. ##
[22]. Roy A, Romero-Pelaez AS, Kwiatkowski TJ, Marfurt K (2014) Generative topographic mapping for seismic facies estimation of a carbonate wash, Veracruz Basin, southern Mexico, Interpretation 2, SA31-SA47. ##
[23]. Lubo D, Marfurt K, Jayaram V (2014) Statistical characterization and geological correlation of wells using automatic learning Gaussian mixture models, Unconventional Resources Technology Conference, Extended Abstracts 774–783. ##
[24]. Hardisty R, Wallet B (2017) Unsupervised seismic facies from mixture models to highlight channel features, SEG Technical Program Expanded Abstracts, 2289-2293. ##
[25]. عدالت ع. و سیاهکوهی ح. ر.، "استفاده از رخساره‌های لرزه‌ای در توصیف یکی از مخازن نفتی ایران،" مجله ژئوفیزیک ایران 1 (1)، 49-37، 1386. ##
[26]. جوکار ع.، رحیمی م. و میرشکاری ف.، "دسته‌بندی و آنالیز رخساره‌های لرزه‌ای به روش‌های نظارتی و غیرنظارتی براساس آنالیز چند نشان‌گری،" ماهنامه علمی- ترویجی اکتشاف و تولید نفت و گاز 50، 67-72،1387. ##
[27]. هادیلو س.، سیاهکوهی ح. و عدالت ع.، "بهبود تحلیل رخساره‌های لرزه‌ای با استفاده از نشان‌گر WTMMLA و خوشه‌بندی‌های SOM و K-mean،" مجله فیزیک زمین و فضا، 38 (2)، 45-56، 1391. ##
[28]. ثابتی ح.، جواهریان ع. و نجار اعرابی ب.، "بررسی تغییر رخساره لرزه‌ای براساس خوشه‌بندی سلسله‌مراتبی نشان‌گرهای لرزه‌ای: بررسی موردی در یکی از میدان‌های نفتی ایران،" مجله ژئوفیزیک ایران 8 (4)، 77-96، 1393. ##
[29]. باقری م.، ریاحی م. ع.، هاشمی ح. و بختیاری م. ر.، "تحلیل رخساره‌های مخزن با استفاده از داده‌های لرزه‌ای در فضای عدم تشابه،" ماهنامه علمی- ترویجی اکتشاف و تولید نفت و گاز 118، 54-59، 1393. ##
[30]. Hartley H (1958) Maximum likelihood from incomplete data, Biometrics 14, 174–194. ##
[31]. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society Series B (Methodological) 39: 1: 1–38. ##
[32]. Han M, Zhao Y, Li G, Reynolds AC (2011) Application of EM algorithms for seismic facies classification, Computational Geosciences 15: 421-429. ##
[33]. Kung S, Mak M, Lin S (2004) Biometric Authentication: A Machine Learning Approach, Prentice Hall.
[34]. Ambroise C, Dang M, Govaert G (1998) Convergence of an EM-type algorithm for spatial clustering, Pattern recognition letters 19: 919–927. ##
[35]. Han M (2008) Application of the EM algorithms for facies classfication and measurement error estimation, M.S. Thesis, University of Tulsa, Tulsa, Oklahoma, USA. ##
[36]. Sfidari E, Kadkhodaie-Ilkhchi A, Rahimpour-Bbonab H, Soltani B (2014) A hybrid approach for litho-facies characterization in the framework of sequence stratigraphy: a case study from the South Pars gas field, the Persian Gulf basin, Elsevier 1: 121:87-102. ##
[37]. Bezdek JC (1981) Cluster Validity. In Pattern Recognition with Fuzzy Objective Function Algorithms, 95–154, Boston, MA, Springer US. ##
[38]. Hadiloo S, Hashemi H, Mirzaei S, Beiranvand B (2017) SeisART software: seismic facies analysis by contributing interpreter and computer, Arabian Journal of Geosciences 10, 23: 519. ##
[39]. هادیلو س.، "تحلیل رخساره‌های لرزه‌ای سه‌بعدی با استفاده از روش تعاملی خوشه‌بندی و کلاسه‌بندی منطق فازی و ANFIS،" رساله دکتری، پژوهشکده علوم پایه کاربردی، جهاد دانشگاهی، 1397. ##