Experimental Measurement and Prediction of Methane Emission Factors: Case Study District Seven of Gas Transmission Operation

Document Type : Research Paper

Authors

1 Chemical Engineering Department, Hamedan University of Technology, Iran

2 Iranian Gas Transmission Company, District Seven of Gas Transmission Operation, Hamedan, Iran

3 Iranian Gas Operation, District 7, Hamedan, Iran

Abstract

In gas transmission processes, a significant amount of methane gas is transferred to the environment for several reasons, including leakage and pipe breakage, which has a high contribution to greenhouse gas emissions. The global methodology for reducing greenhouse gases has led to a plan to reduce greenhouse gas emissions from gas transmission lines according to international conventions and the national action plan to reduce greenhouse gas emissions. Therefore, the purpose of this study in first was experimentally measurement of methane gas emission due to leakage of blowdown valves from different points of district seven of gas transmission operation and then the prediction of gas emission factors using multilayer perceptron neural network with backpropagation of error and Levenberg-Marquardt algorithm. Accordingly, the effect of operating parameters on the emission factor, including ambient temperature, pipeline pressure, type of valve, condition of the valve (open or close) located before of blowdown, Internal leakage of bypass valve before blowdown, life of blowdown valve, the sound of leakage and concentration of the leakage in the range of 10-10000 ppm were investigated. To find the effective parameters on the emission factor, six various schemes were considered based on different input parameters. The results of prediction of methane emission factors using neural network showed that the scheme with input parameters as ambient temperature, pipeline pressure, age of valve, the sound of leakage and concentration of the leakage shows the best results. Deviation with measurements and coefficient of determination (R squared) of the best scheme among the six schemes are equal to RMSE=0.05047, MSE=0.00255, and R2=0.97853, which they show that this method can be used to predict the methane emission factors in natural gas transmission pipelines.
 

Keywords


[1]. سعیدی م.، سیاوشی ف.، تولید هیدروژن با بازیافت گاز دورریز واحد آمونیاک برای تأمین خوراک پیل   سوختی اکسید جامد و کاهش گازهای گلخانه ای، نشریه شیمی و مهندسی شیمی ایران، دوره 36، شماره 4، صفحات 237-221، 1396.##
[2]. United Nations Economic Commission for Europe (UNECE), Protocol to abate acidification, Eutrophication and ground-level ozone, UNECE, Gothenburg, 1999. ##
[3]. Kiehl Jeffrey T, Kevin E Trenberth (1997) Earth’s annual global mean energy budget, Bulletin of the American Meteorological Society, 78. 2. 197-208. ##
[4]. Stocker Th F, Qin D, Plattner G K, Tignor M (2007) Summary for policymakers climate change, The physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Special Report on Emissions Scenarios. ##
[5]. Nakicenovic N, Swart R (2000) IPCC special report on emissions scenarios, Cambridge University Press, U.K. ##
[6]. Grubb M (1992) The economics of the Kyoto protocol, World Economics, 4. 3. 2212-2223. ##
[7]. Harrison M R, Campbell M L, Shires Th M, Cowgil R M (1996) EPA/GRI methane emissions from the natural gas industry, Technical Report, GRI-94/0257.1, EPA-600/R-96-080b: 2. ##
[8]. Le Treut H, Somerville R (2007) Intergovernmental panel on climate change fourth assessment report, Chapter 1, Historical overview of climate change science, Cambridge University Press, Cambridge, U.K. ##
[9]. مرادی ا.، امینیان م.، میزان نشر گازهای گلخانه ای، درسال، نشریه نشاء علم، دوره 3، شماره 1، صفحات 11-1، 1391. ##
[10]. Khoshnevisan B, Rafiee S, Omid M, Yousefi M, Movahedi M (2013) Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks, Energy, 52. 1. 333-338. ##
[11]. Steczko K, Fronski A, Rachwalski J () Inventory of methane emissions from gas industry problem solved or still opened oil and gas institute, Krakow, Poland, 1, 1: 1-14. 2010. ##
[12]. Shahpari A, Aminsharei F. Ghashang M (2019) Application of PHAST software in methane emission factor for startup process of gas compressors (Case study: Iran gas transmission operation district 2), Journal of Air Pollution and Health, 4, 1. 27-32. ##
[13]. Shires T M, Loughran Ch L, Jones S, Hopkins E (2009) Compendium of greenhouse gas emissions estimation methodologies for the oil and natural gas industry, American Petroleum Institute, Washington, DC. ##
[14]. Stamenkovic L J, Antanasijevic D Z, Ristic M D, PERIC-Grujic A A, Pocajt V V (2015) Modeling of methane emissions using the artificial neural network approach, Journal of the Serbian Chemical Society, 80. 3. 421-433. ##
[15]. Dedikov J V, Akopova G S, Gladkaja N G, Piotrovskij A S, Markellov V A, Salichov S S, Kaesler H, Ramm A, MuK ller von Blumencron A, Lelieveld J (1999) Estimating methane releases from natural gas production and transmission in Russia, Atmospheric Environ., 33. 1. 3291-3299. ##
[16]. Lechtenböhmer S, Dienst C, Fischedick M (2007) Tapping the leakages: Methane losses, mitigation options and policy issues for Russian long distance gas transmission pipelines, journal of greenhouse gas control, 1. 4: 387-395. ##
[17]. منصوری ن.، چاوشی ب.، ارزیابی میزان انتشار و ضریب انتشار ( فاکتور انتشار) گاز متان از خروجی‌های پالایشگاه نفت تهران، چهارمین همایش تخصصی مهندسی محیط زیست، صفحات 12-1، 1389. ##
[18]. مرادی بیدهندی، م.، محاسبه مقدار نشر گاز متان در اثر سوزاندن گازهای سرچاهی در فلر (مطالعه موردی)، ماهنامه علمی ترویجی اکتشاف نفت و گاز، دوره 1، شماره 105، صفحات 33-26، 1392. ##
[19]. Ehsani M R, Bateni H, Parchikolaei Gh R (2013) Modeling of oxidative coupling of methane over Mn/Na2WO4/SiO2 catalyst using artificial neural network, Iran, Iranian Journal of Chemistry and Chemical Engineering, 32. 3, 107-114. ##
[20]. صیاد امین ج.، رفیعی س.، بهادری ع.، شبکه عصبی برای جداسازی دی اکسید کربن از ‏مخلوط‌های گازی مختلف با استفاده از هیدرات‌های نیمه گازی در حضور بهبود دهنده‌ها، نشریه شیمی و مهندسی شیمی ایران، دوره 38، شماره 1، صفحات 241-231، 1398. ##