منابع
[1] Mohaghegh S.D., “Chevron A., Gaskari R., Siegfreid R., Determining In-Situ Stress Profiles From Logs”, SPE., 90070, 2004.
[2] Duboisa K., Geoffrey C., Bohling S., “Comparison of four approaches to a rock facies classification problem”, Computers & Geosciences., Vol. 33, pp. 599-617, 2007.
[3] Siripitayananon P., Chen H., Hart B.S., A New Technique for Lithofacies Prediction: Back-Propagation Neural Network, Association for Computing Machinery., Inc, 2001.
[4] Nikravesh M., “Soft computing-based computational intelligent for reservoir characterization”, Expert Systems with Applications., Vol. 26, pp. 19-38, 2004.
[5] Nikravesh M., Aminzadeh F., “Mining and fusion of petroleum data with fuzzy logic and neural network agents”, Journal of Petroleum Science and Engineering., Vol. 29, pp. 221-238, 2001.
[6] Kadkhodaie Ilkhchi A., Rezaee M.R., Moallemi S.A., “A fuzzy logic approach for estimation of permeability and rock type from conventional well log data: an example from the Kangan reservoir in the Iran Offshore Gas Field”, Journal of Geophysics and Engineering. Vol. 3, pp. 356-369, 2006.
[7] Rezaee M.R., Kadkhodaie A., Barabadi A., “Prediction of shear wave velocity from petrophysical data utilizing intelligent systems: An example from a sandstone reservoir of Carnarvon Basin, Australia”, Journal of Petroleum Science and Engineering., Vol. 55, pp. 201-212, 2007.
[8] Taheri S.R., “Remote sensing, fuzzy logic and GIS in petroleum exploration”, SPE., 101040, 2006.
[9] Shiwei Y., Kejun Z., Fengqin D., “A dyanamic all parameter adaptive BP neural networks model and its application on oil reservoir prediction”, Applied mathematics and computation., Vol. 195, pp. 66-75, 2008.
[10] Hambalek N., Gozalez R., “Fuzzy logic applied lithofacies and permeability forecasting”, SPE., 81078, 2003.
[11] Cuddy S.L., “Lithofacies and permeability prediction from electrical logs using fuzzy logic”, SPE., 65411, 2000.
[12] Zhou Z.H., Chen Z.Q., Chen S., Neural networks based lithology identification, Proceedings of the International Conference on Intelligent Information Processing., Beijing, China, pp. 139-142, 2000.
[13] Chang H., Kopaska C., Chen H., “Identification of lithofacies using Kohonen self-organizing maps”, Computers & Geosciences., Vol. 28, pp. 223-229, 2002.
[14] Briqueu L., Gottlib-Zeh S., Ramadan M., Brulhet J., “Inferring lithology from downhole measurements using an unsupervised self-organising neural network: study of the Marcoule silty clayish Unit”, C. R. Geoscience., Vol. 334, pp. 331-337, 2002.
[15] Matlab User’s Guide, Neural Networks Toolbox for use with Matlab, by the Math Works, Ins., 2010.
[16] شرکت نفت و گاز پارس، گزارش نهایی حفاری و زمین شناسی میدان گازی پارس جنوبی، مدیریت مهندسی نفت و گاز، 1382.
[17] شرکت نفت و گاز پارس، گزارشات تکمیلی چاههای مورد مطالعه و نتایج عملیات مغزه گیری، بخش زمینشناسی و ژئوفیزیک، 1386.