An Integrated Approach to Evaluate and Rank the Enhanced Oil Recovery Methods from Reservoirs: A Case Study

Document Type : Research Paper

Authors

1 Hydrocarbon Reservoirs Management, Tehran Faculty of Petroleum Technology, Iran

2 Division of Energy Economics and Management, Tehran Faculty of Petroleum Technology, Iran

Abstract

This study aims to evaluate and rank the potential Enhanced Oil Recovery (EOR) methods in one of Iran›s oil reservoirs (Asmari reservoir). In this regard, two main steps including screening of EOR methods and risk analysis were carried out. First, four EOR methods including combined carbon dioxide injection, polymer injection, nitrogen injection, and alternating water and gas injection (WAG) were screened using the Adaptive Neuro-Fuzzy Inference System (ANFIS) approach, and two methods such as combined carbon dioxide injection and polymer injection were determined as suitable candidate EOR methods for the studied reservoir. Then, in order to evaluate them more accurately, the risks of these two methods in the EOR process were identified and evaluated using the Delphi method and the Failure Modes and Effects Analysis (FMEA) approach. The results of the risk evaluation showed that the two risks of «severe damage due to asphaltene deposition» and «reduction of permeability» were respectively the most important ones of applying the methods of carbon dioxide injection and polymer injection in enhanced oil recovery from the studied reservoir. In addition, the cumulative score of the extraction factor and the overall risk priority number for the two mentioned methods showed that the implementation of the polymer injection method has a lower risk and, in general, is considered the best method in enhanced oil recovery from the studied reservoir.

Keywords

Main Subjects


[1]. Yang, S., Li, Z., Yan, K., Zhang, X., Xu, Z., Liu, W., ... & Liu, H. (2021). Removing and recycling mercury from scrubbing solution produced in wet nonferrous metal smelting flue gas purification process. Journal of Environmental Sciences, 103, 59-68. https://doi.org/10.1016/j.jes.2020.10.013.##
[2]. Bai, B., Guo, Z., Zhou, C., Zhang, W., & Zhang, J. (2021). Application of adaptive reliability importance sampling-based extended domain PSO on single mode failure in reliability engineering. Information Sciences, 546, 42-59. https://doi.org/10.1016/j.ins.2020.07.069##
[3]. خا‌ک‌نژاد، س. و ابراهیم‌زاده رجایی، غ. ر. (1399). ،بررسی نقاط قوت و ضعف روش‌های ازدیاد برداشت نفت، کنفرانس ملی مهندسی شیمی و نانوفن‌آوری، دزفول. ##
[4]. کیارسی‌حیدر، پ.، رادفر، ر.، البرزی، م. و طلوعی اشلقی، ع. (1397). تدوین نقشه راه فن‌آوری‌های ازدیاد برداشت نفت: رویکرد پویایی سیستمی. پژوهش‌های سیاست‌گذاری و برنامه‌ریزی انرژی، 4(13)، 122-89. ##
[5]. Rozhkova, Y. A., Burin, D. A., Galkin, S. V., & Yang, H. (2022). Review of microgels for enhanced oil recovery: Properties and cases of application. Gels, 8(2), 112. doi.org/10.3390/gels8020112. ##
[6]. قربانی، ه.، مقدسی، ج. و قربانی، ه. (1395). ارزیابی عملکرد روش‌های ازدیاد برداشت نفت و ارائه راهکار متناسب با مخازن نفتی ایران، ششمین همایش علمی مهندسی مخازن هیدروکربوری و صنایع بالادستی، تهران. ##
[7]. Vora, M., Sanni, S., & Flage, R. (2021). An environmental risk assessment framework for enhanced oil recovery solutions from offshore oil and gas industry. Environmental Impact Assessment Review, 88, 106512. doi.org/10.1016/j.eiar.2020.106512. ##
[8]. Shaktawat, A., & Vadhera, S. (2020). Risk management of hydropower projects for sustainable development: a review. Environment, Development and Sustainability, 1-32. doi.org/10.1007/s10668-020-00607-2. ##
[9]. Burggräf, P., Adlon, T., Schupp, S., & Salzwedel, J. (2021). Risk Management in Factory Planning–A Literature Review. Procedia CIRP, 104, 1191-1196. doi.org/10.1016/j.procir.2021.11.200. ##
[10]. Buganová, K., & Šimíčková, J. (2019). Risk management in traditional and agile project management. ##
[11]. Odimabo, O., & Oduoza, C. F. (2018). Guidelines to aid project managers in conceptualizing and implementing risk management in building projects. Procedia Manufacturing, 17, 515-522. doi.org/10.1016/j.promfg.2018.10.091. ##
[12]. Szymański, P. (2017). Risk management in construction projects. Procedia Engineering, 208, 174-182. doi.org/10.1016/j.proeng.2017.11.036. ##
[13]. Pan, X., & Wang, Y. (2021). Evaluation of renewable energy sources in China using an interval type-2 fuzzy large-scale group risk evaluation method. Applied Soft Computing, 108, 107458. doi.org/10.1016/j.asoc.2021.107458. ##
[14]. Pirizadeh, M., Alemohammad, N., Manthouri, M., & Pirizadeh, M. (2023). A new approach for ranking enhanced oil recovery methods based on multi-gene genetic programming. Petroleum Science and Technology, 41(1), 64-85. doi.org/10.1080/10916466.2022.2030752. ##
[15]. Wei, Z., Zhu, S., Dai, X., Wang, X., Yapanto, L. M., & Raupov, I. R. (2021). Multi-criteria decision making approaches to select appropriate enhanced oil recovery techniques in petroleum industries. Energy Reports, 7, 2751-2758. https://doi.org/10.1016/j.egyr.2021.05.002. ##
[16] Bealessio, B. A., Alonso, N. A. B., Mendes, N. J., Sande, A. V., & Hascakir, B. (2021). A review of enhanced oil recovery (EOR) methods applied in Kazakhstan. Petroleum, 7(1), 1-9. doi.org/10.1016/j.petlm.2020.03.003. ##
[17]. Preux, C., Lamoureux-Var, V., Ayache, S. V., & Michel, P. (2018). Forecasting H2S Production Risk in Thermal Projects for EOR. In First EAGE/IFPEN Conference on Sulfur Risk Management in Exploration and Production (pp. cp-565). EAGE Publications BV. dx.doi.org/10.3997/2214-4609.201802770. ##
[18]. Jia, W., Pan, F., Dai, Z., Xiao, T., & McPherson, B. (2017). Probabilistic risk assessment of CO2 trapping mechanisms in a sandstone CO2-EOR field in northern texas, USA. Energy Procedia, 114, 4321-4329. doi.org/10.1016/j.egypro.2017.03.1581. ##
[19]. Hartono, A.D., Hakiki, F., Syihab, Z., Ambia, F., Yasutra, A., Sutopo, S., Efendi, M., Sitompul, V., Primasari, I. and Apriandi, R. (2017). Revisiting EOR projects in indonesia through integrated study: EOR screening, predictive model, and optimisation. In SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. OnePetro. dx.doi.org/10.2118/186884-MS. ##
[20]. Nazarian, B., & Ringrose, P. (2017). Risk Associated with Legacy Wells in CCS and CO2 EOR Projects; a Simulation Study. In 79th EAGE Conference and Exhibition,  2017(1). 1-5. EAGE Publications BV. dx.doi.org/10.3997/2214-4609.201700759. ##
[21]. Suleimanov, B. A., Ismayilov, F. S., Dyshin, O. A., & Veliyev, E. F. (2016). Selection methodology for screening evaluation of EOR methods. Petroleum Science and Technology, 34(10), 961-970. dx.doi.org/10.1080/10916466.2015.1107849. ##
[22]. قجاوند، ح. و شفیعی، م. ا. (1399). ارائه مدل افزایش بهره‌وری مراکز ازدیاد برداشت از مخازن نفت و گاز کشور با انتخاب شرکای فن‌آور مناسب خارجی جهت توسعه زنجیره ارزش. نشریه پژوهش نفت، 30(110)، 144-131 .doi.org/10.22078/pr.2018.3263.2505. ##
[23]. بلیله‌وند، ح. ر.، دشتی، ن.، خراط، ر. و جباری، ن. (1397). بررسی عملکرد شبکه‌های عصبی مصنوعی (ANN) در انتخاب هوشمند روش‌های ازدیاد برداشت نفت، پنجمین کنفرانس بین‌المللی فن‌آوری و مدیریت انرژی با رویکرد پیوند انرژی، آب و محیط زیست، تهران. ##
[24]. دباغی، آ.، ابراهیم‌زاده رجائی، ش.، پروازدوانی، م. و گرامی، ش. (1403). رویکردی جامع برای ارزیابی و اولویت‌بندی ریسک‌های ازدیادبرداشت: مطالعه موردی ازدیاد برداشت آب‌پایه در یکی از میادین نفتی جنوب غربی ایران. پژوهش نفت. .doi.org/10.22078/pr.2024.5307.3356. ##
[25]. خیرالهی، ح.، زایدی، م.، سبحانی، ص.، چهاردولی، م.، و سیم‌جو، م. (1402). غربال‌گری روش‌های ازدیاد برداشت از مخازن نفتی با استفاده از تلفیق روش‌های هوش‌مصنوعی. پژوهش نفت، 33(5)، 62-51. doi.org/10.22078/pr.2023.5151.3284##
[26]. García-Crespo, Á., Colomo-Palacios, R., Soto-Acosta, P., & Ruano-Mayoral, M. (2010). A qualitative study of hard decision making in managing global software development teams. Information Systems Management, 27(3), 247-252. doi.org/10.1080/10580530.2010.493839. ##
[27]. Ko, W. C. (2013). Exploiting 2-tuple linguistic representational model for constructing HOQ-based failure modes and effects analysis. Computers & Industrial Engineering, 64(3), 858-865. doi.org/10.1016/j.cie.2012.11.016. ##
[28]. Liu, H. C., Liu, L., Liu, N., & Mao, L. X. (2012). Risk evaluation in failure mode and effects analysis with extended VIKOR method under fuzzy environment. Expert Systems with Applications, 39(17), 12926-12934. doi.org/10.1016/j.eswa.2012.05.031.
[29]. Haktanir, E., & Kahraman, C. (2021). A Novel CRITIC Based Weighted FMEA Method: Application to COVID-19 Blood Testing Process. Journal of Multiple-Valued Logic & Soft Computing, 37. ##
[30]. Mentes, A., & Helvacioglu, I. H. (2011). Review of Fuzzy Set Theory Applications in Safety Assessment for Marine and Offshore Industries. In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering (pp. 875-884). American Society of Mechanical Engineers. dx.doi.org/10.1115/OMAE2011-50244. ##
[31]. Kumru, M., & Kumru, P. Y. (2013). Fuzzy FMEA application to improve purchasing process in a public hospital. Applied Soft Computing, 13(1), 721-733. doi.org/10.1016/j.asoc.2012.08.007. ##
[32]. Bowles, J. B., & Peláez, C. E. (1995). Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis. Reliability Engineering & System Safety, 50(2), 203-213. doi.org/10.1016/0951-8320(95)00068-D. ##