Effect of Alkaline-acidic Activation of Vermiculite Before its Surface Modification with CTAB on Oil Sorption Capacity

Document Type : Research Paper

Authors

1 Nanomaterials and Surface Technology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran

2 Department of Chemical Engineering, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran

Abstract

adsorption was investigated in this study. Edible oil, n-hexane, and dichloromethane were chosen as oil contaminants. Moreover, FTIR analysis, field emission scanning electron microscope analysis, specific surface measurement (BET), zeta potential, and static contact angle analyses were used to investigate the effect of activation and CTAB modification on the morphological characteristics, phase structure, surface chemical composition, and wetting behavior of the prepared samples. The results showed that the sample prepared by alkaline-acid activation of vermiculite with potassium hydroxide (1.5 M) and sulfuric acid (0.5 M) and modified with CTAB (0.5 mM) exhibited the highest specific surface area and hydrophobic properties with a 145.6° water contact angle. In addition, the adsorption capacity of edible oils, normal hexane, and dichloromethane increased by 108.6%, 52.5%, and 104.8 % respectively, compared to the raw sample.

Keywords

Main Subjects


[1]. Ismail, N. H., Salleh, W. N. W., Ismail, A. F., Hasbullah, H., Yusof, N., Aziz, F., & Jaafar, J. (2020). Hydrophilic polymer-based membrane for oily wastewater treatment: A review. Separation and Purification Technology, 233, 116007. doi: https://doi.org/10.1016/j.seppur.2019.116007.##
[2]. Okiel, K., El-Sayed, M., & El-Kady, M. Y. (2011). Treatment of oil–water emulsions by adsorption onto activated carbon, bentonite and deposited carbon. Egyptian Journal of Petroleum, 20(2), 9-15. doi: https://doi.org/10.1016/j.ejpe.2011.06.002. ##
[3]. Faisal, M. (2015). Produced Water Treatment by Organoclay Adsorption and Dissolved Air Floatation (Doctoral dissertation, Faculty of Graduate Studies and Research, University of Regina), URI https://hdl.handle.net/10294/5811. ##
[4]. زندی، ا.، اکبری سنه، ر. و رحمانی چیانه، ف. (2022). تأثیر زئولیت طبیعی کلینوپتیلولیت بر خواص و عملکرد فتوکاتالیستی نیمه‌رسانای BiOI در تخریب نوری پساب رنگی. پژوهش نفت 32:48-65. doi: 10.22078/pr.2022.4669.3099##
[5].Lira, C. A., Silva, D. S., Costa Filho, A. P. D., Lucas, E. F., & Santana, S. A. (2017). Smectite clay modified with quaternary ammonium as oil remover, Journal of the Brazilian Chemical Society, 28(2), 208-216, doi.org/10.5935/0103-5053.20160165. ##
[6]. اکبری سنه، ر.، رحمانی، ف.، مرادی، غ. و شریف‌نیا، ش. (2020). تثبیت نانوذرات TiO2 برروی آلومیناسیلیکات طبیعی فرآوری شده جهت تولید هیدروژن: ارزیابی اثر فرآوری شیمیایی پایه و شرایط عملیاتی فرآیند. پژوهش نفت 30:14-30. doi: 10.22078/pr.2020.3827.2743. ##
[7]. Khalifa, A. Z., Cizer, Ö., Pontikes, Y., Heath, A., Patureau, P., Bernal, S. A., & Marsh, A. T. (2020). Advances in alkali-activation of clay minerals, Cement and Concrete Research, 132, 106050, doi: https://doi.org/10.1016/j.cemconres.2020.106050. ##
[8]. de Queiroga, L. N. F., Soares, P. K., Fonseca, M. G., & de Oliveira, F. J. V. E. (2016). Experimental design investigation for vermiculite modification: Intercalation reaction and application for dye removal. Applied Clay Science, 126, 113-121. doi: https://doi.org/10.1016/j.clay.2016.02.031. ##
[9]. Patanjali, P., Chopra, I., Patanjali, N., & Singh, R. (2020). A compendious review on clay modification techniques for wastewater remediation. The Indian Journal of Agricultural Sciences, 90(12), 2262-2274, doi.org/10.56093/ijas.v90i12.110309. ##
[10]. Rahmani, F., Haghighi, M., & Amini, M. (2015). The beneficial utilization of natural zeolite in preparation of Cr/clinoptilolite nanocatalyst used in CO2-oxidative dehydrogenation of ethane to ethylene. Journal of Industrial and Engineering Chemistry, 31, 142-155. doi: https://doi.org/10.1016/j.jiec.2015.06.018##
[11]. Wang, Q., Zhang, J., & Wang, A. (2013). Alkali activation of halloysite for adsorption and release of ofloxacin. Applied Surface Science, 287, 54-61. doi: https://doi.org/10.1016/j.apsusc.2013.09.057. ##
[12]. Silva, A., Martinho, S., Stawiński, W., Węgrzyn, A., Figueiredo, S., Santos, L. H., & Freitas, O. (2018). Application of vermiculite-derived sustainable adsorbents for removal of venlafaxine. Environmental Science and Pollution Research, 25, 17066-17076. doi: 10.1007/s11356-018-1869-6. ##
[13]. Stawiński, W., Węgrzyn, A., Freitas, O., Chmielarz, L., Mordarski, G., & Figueiredo, S. (2017). Simultaneous removal of dyes and metal cations using an acid, acid-base and base modified vermiculite as a sustainable and recyclable adsorbent. Science of the Total Environment, 576, 398-408, doi.org/10.1016/j.scitotenv.2016.10.120. ##
[14]. Stawiński, W., Węgrzyn, A., Dańko, T., Freitas, O., Figueiredo, S., & Chmielarz, L. (2017). Acid-base treated vermiculite as high performance adsorbent: Insights into the mechanism of cationic dyes adsorption, regeneration, recyclability and stability studies. Chemosphere, 173, 107-115, doi.org/10.1016/j.chemosphere.2017.01.039. ##
[15]. da Silva Jr, U. G., Melo, M. A. D. F., da Silva, A. F., & de Farias, R. F. (2003). Adsorption of crude oil on anhydrous and hydrophobized vermiculite. Journal of Colloid and Interface Science, 260(2), 302-304. doi: https://doi.org/10.1016/S0021-9797(02)00160-1. ##
[16]. Ismadji, S., Soetaredjo, F. E., Ayucitra, A., Ismadji, S., Soetaredjo, F. E., & Ayucitra, A. (2015). Modification of clay minerals for adsorption purpose. Clay Materials for Environmental Remediation, 39-56. ##
[17]. Zhang, R., Zhu, X., & Cai, Y. (2019). The Phase Transformation Mechanism of Bentonite-Stabilized and Cetyltrimethylammonium Bromide-Stabilized Emulsions and Application in Reversible Emulsification Oil-Based Drilling Fluids. Journal of Surfactants and Detergents, 22(3), 525-534, doi.org/10.1002/jsde.12231. ##
[18]. Zhang, J., Li, L., Xu, J., & Sun, D. (2014). Effect of cetyltrimethylammonium bromide addition on the emulsions stabilized by montmorillonite. Colloid and Polymer Science, 292, 441-447. ##
[19]. Shi, Z., Li, P., & Liu, L. (2023). Interactions between CTAB and montmorillonite by atomic force microscopy and molecular dynamics simulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 657, 130656, doi.org/10.1016/j.colsurfa.2022.130656. ##
[20]. Jiménez-Castañeda, M. E., & Medina, D. I. (2017). Use of surfactant-modified zeolites and clays for the removal of heavy metals from water. Water, 9(4), 235, doi.org/10.3390/w9040235. ##
[21]. Patrício, A. C. L., da Silva, M. M., de Sousa, A. K. F., Mota, M. F., & Freire Rodrigues, M. G. (2012, November). SEM, XRF, XRD, Nitrogen Adsorption, Fosters Swelling and Capacity Adsorption Characterization of Cloisite 30 B. In Materials Science Forum (Vol. 727, pp. 1591-1595). Trans Tech Publications Ltd, doi.org/10.4028/www.scientific.net/MSF.727-728.1591. ##
[22]. Zhang, L., Lu, X., Liu, X., Yang, K., & Zhou, H. (2016). Surface wettability of basal surfaces of clay minerals: Insights from molecular dynamics simulation. Energy & Fuels, 30(1), 149-160. doi: 10.1021/acs.energyfuels.5b02142##
[23]. Pishdadi-Aghdarreh, F., Norouzbeigi, R., & Velayi, E. (2023). Acid-base treatment of lightweight expanded clay aggregate (LECA) for removal of paraquat from aqueous media. Journal of Environmental Chemical Engineering, 11(5), 110405. doi.org/10.1016/j.jece.2023.110405. ##
[24]. Temuujin, J., Senna, M., Jadambaa, T., Burmaa, D., Erdenechimeg, S., & MacKenzie, K. J. (2006). Characterization and bleaching properties of acid-leached montmorillonite. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81(4), 688-693, doi.org/10.1002/jctb.1469. ##
[25]. Velayi, E., & Norouzbeigi, R. (2018). Synthesis of hierarchical superhydrophobic zinc oxide nano-structures for oil/water separation. Ceramics International, 44(12), 14202-14208, doi.org/10.1016/j.ceramint.2018.05.023. ##
[26]. Senez, V., Thomy, V., & Dufour, R. (2014). Nanotechnologies for synthetic super non-wetting surfaces. Nanotechnologies for Synthetic Super Non-Wetting Surfaces, 1-12, doi.org/10.1002/9781119015093.ch1. ##
[27]. Shayesteh, H., Norouzbeigi, R., & Rahbar-Kelishami, A. (2021). Hydrothermal facile fabrication of superhydrophobic magnetic nanospiky nickel wires: Optimization via statistical design. Surfaces and Interfaces, 26, 101315, doi.org/10.1016/j.surfin.2021.101315. ##
[28]. Zhao, J., Deng, Y., Dai, M., Wu, Y., Ali, I., & Peng, C. (2022). Preparation of super-hydrophobic/super-oleophilic quartz sand filter for the application in oil-water separation. Journal of Water Process Engineering, 46, 102561, doi.org/10.1016/j.jwpe.2022.102561. ##
[29]. Chen, X., Tong, D., Fang, Z., Gao, Z., & Yu, W. (2022). Acid leaching vermiculite: a multi-functional solid catalyst with a strongly electrostatic field and brönsted acid for depolymerization of cellulose in water. Molecules, 27(10), 3149. doi.org/10.3390/molecules27103149. ##
[30]. Bi, Z., Liao, W., & Qi, L. (2004). Wettability alteration by CTAB adsorption at surfaces of SiO2 film or silica gel powder and mimic oil recovery. Applied Surface Science, 221(1-4), 25-31, doi.org/10.1016/S0169-4332(03)00948-6. ##
[31]. Widjonarko, D. M., Mayasari, O. D., Wahyuningsih, S., & Nugrahaningtyas, K. D. (2018, March). Modification of Montmorillonite with Cetyl Trimethylammonium Bromide and Tetra Ethyl Ortho Silicate. In IOP Conference Series: Materials Science and Engineering, 333, 1, 012048. IOP Publishing, doi: 10.1088/1757-899X/333/1/012048. ##
[32]. Basaleh, A. A., Al-Malack, M. H., & Saleh, T. A. (2019). Methylene Blue removal using polyamide-vermiculite nanocomposites: Kinetics, equilibrium and thermodynamic study. Journal of Environmental Chemical Engineering, 7(3), 103107. doi.org/10.1016/j.jece.2019.103107. ##
[33]. Hashem, F. S., Amin, M. S., & El-Gamal, S. M. A. (2015). Chemical activation of vermiculite to produce highly efficient material for Pb2+ and Cd2+ removal. Applied Clay Science, 115, 189-200.doi.org/10.1016/j.clay.2015.07.042. ##
[34]. Kabdrakhmanova, S., Aryp, K., Shaimardan, E., Kanat, E., Selenova, B., Nurgamit, K., Kerimkulova, A., Amitova, A. and Maussumbayeva, A. (2023). Acid modification of clays from the Kalzhat, Orta Tentek deposits and study their physical-chemical properties. Materials Today: Proceedings. doi: https://doi.org/10.1016/j.matpr.2023.04.427. ##
[35]. Zhou, Y., Cheng, H., Wei, C., & Zhang, Y. (2021). Effect of acid activation on structural evolution and surface charge of different derived kaolinites. Applied Clay Science, 203, 105997. doi.org/10.1016/j.clay.2021.105997. ##
[36]. Mohammed, I., Al Shehri, D., Mahmoud, M., Kamal, M. S., Alade, O., Arif, M., & Patil, S. (2022). Effect of Native Reservoir State and Oilfield Operations on Clay Mineral Surface Chemistry. Molecules, 27(5), 1739. doi.org/10.3390/molecules27051739.
[37]. Moslemizadeh, A., Aghdam, S. K. Y., Shahbazi, K., Aghdam, H. K. Y., & Alboghobeish, F. (2016). Assessment of swelling inhibitive effect of CTAB adsorption on montmorillonite in aqueous phase. Applied Clay Science, 127, 111-122, doi.org/10.1016/j.clay.2016.04.014. ##
[38]. Jiménez-Castañeda, M. E., & Medina, D. I. (2017). Use of surfactant-modified zeolites and clays for the removal of heavy metals from water. Water, 9(4), 235. doi.org/10.3390/w9040235. ##
[39]. Bergström, L. M. (2016). Second CMC in surfactant micellar systems. Current Opinion in Colloid & Interface Science, 22, 46-50. doi.org/10.1016/j.cocis.2016.02.008. ##
[40]. Lin, C., Fan, B., Zhang, J., Yang, X. & Zhang, H. (2015). Study on lead ion wastewater treatment of self-assembled film. Desalination and Water Treatment 57:1-7. doi: 10.1080/19443994.2015.1121839. ##
[41]. Shi, K.Y., Chen, J.Q., Pang, X.Q., Jiang, F.J., Hui, S.S., Zhao, Z.C., Chen, D., Cong, Q., Wang, T., Xiao, H.Y. and Yang, X.B. (2023). Wettability of different clay mineral surfaces in shale: Implications from molecular dynamics simulations. Petroleum Science, 20(2), pp.689-704.doi.org/10.1016/j.petsci.2023.02.001. ##
[42]. Cassie, A. and Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society 40:546-551. ##
[43]. Xu, W., Johnston, C. T., Parker, P., & Agnew, S. F. (2000). Infrared study of water sorption on Na-, Li-, Ca-, and Mg-exchanged (SWy-1 and SAz-1) montmorillonite. Clays and Clay minerals, 48(1), 120-131. doi: 10.1346/CCMN.2000.0480115. ##
[44]. Zhang, F., Yuan, C., Lu, X., Zhang, L., Che, Q., & Zhang, X. (2012). Facile growth of mesoporous Co3O4 nanowire arrays on Ni foam for high performance electrochemical capacitors. Journal of Power Sources, 203, 250-256.doi.org/10.1016/j.jpowsour.2011.12.001. ##
[45]. Bhattacharya, S., & Aadhar, M. (2014). Studies on preparation and analysis of organoclay nano particles. Resareach Journal Engineering Sciences, 2278, 9472. ISSN 2278 – 9472. ##
[46]. Maletaškić, J., Stanković, N., Daneu, N., Babić, B., Stoiljković, M., Yoshida, K., & Matović, B. (2018). Acid leaching of natural chrysotile asbestos to mesoporous silica fibers. Physics and Chemistry of Minerals, 45, 343-351. doi: 10.1007/s00269-017-0924-z. ##
[47]. Siddiqui H, Qureshi MS and Haque FZ (2016) Hexamine (HMT) assisted wet chemically synthesized CuO nanostructures with controlled morphology and adjustable optical behavior. Optical and Quantum Electronics 48:349. doi: 10.1007/s11082-016-0618-7. ##
[48]. Lira, C. A., Silva, D. S., Costa Filho, A. P. D., Lucas, E. F., & Santana, S. A. (2017). Smectite clay modified with quaternary ammonium as oil remover. Journal of the Brazilian Chemical Society, 28(2), 208-216. doi.org/10.5935/0103-5053.20160165 . ##
[49]. Xue, W., He, H., Zhu, J., & Yuan, P. (2007). FTIR investigation of CTAB–Al–montmorillonite complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67(3-4), 1030-1036. doi.org/10.1016/j.saa.2006.09.024. ##
[50]. Natural, O. (2012). Adsorption from aqueous solution onto natural and acid activated bentonite. American Journal of Environmental Science, 8(5), 510-522. doi: 10.3844/ajessp.2012.510.522. ##
[51]. Soni, V. K., Roy, T., Dhara, S., Choudhary, G., Sharma, P. R., & Sharma, R. K. (2018). On the investigation of acid and surfactant modification of natural clay for photocatalytic water remediation. Journal of Materials Science, 53, 10095-10110. doi: 10.1007/s10853-018-2308-2. ##
[52]. Pinto Brito, M. J., Veloso, C. M., Santos, L. S., Ferreira Bonomo, R. C., & Ilheu Fontan, R. D. C. (2018). Adsorption of the textile dye Dianix (R) royal blue CC onto carbons obtained from yellow mombin fruit stones and activated with KOH and H3PO4: kinetics, adsorption equilibrium and thermodynamic studies. Powder Technology, 339, 334-343. doi.org/10.1016/j.powtec.2018.08.017. ##
[53]. Wang, J., & Guo, S. (2019). The whole-aperture pore-structure characteristics of marine-continental transitional shale facies of the Taiyuan and Shanxi Formations in the Qinshui Basin, North China. Interpretation, 7(2), T547-T563. doi.org/10.1190/INT-2018-0157.1. ##
[54]. Sing, K. S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619. ##
[55]. Zhang, M., Hu, M., Wei, S., Cai, Q., Fu, W., Shi, F., Zhang, L. and Ding, H. (2023). Factors Controlling the Pore Development of Low-Mature Marine–Continental Transitional Shale: A Case Study of the Upper Permian Longtan Shale, Western Guizhou, South China. Journal of Marine Science and Engineering, 11(10), 1862. doi.org/10.3390/jmse11101862. ##
[56]. Chutia, P., Kato, S., Kojima, T., & Satokawa, S. (2009). Adsorption of As (V) on surfactant-modified natural zeolites. Journal of Hazardous Materials, 162(1), 204-211. doi.org/10.1016/j.jhazmat.2008.05.024. ##
[57]. Shah, K. J., Mishra, M. K., Shukla, A. D., Imae, T., & Shah, D. O. (2013). Controlling wettability and hydrophobicity of organoclays modified with quaternary ammonium surfactants. Journal of Colloid and Interface Science, 407, 493-499. doi.org/10.1016/j.jcis.2013.05.050. ##
[58]. da Silva Jr, U. G., Melo, M. A. D. F., da Silva, A. F., & de Farias, R. F. (2003). Adsorption of crude oil on anhydrous and hydrophobized vermiculite. Journal of Colloid and Interface Science, 260(2), 302-304. doi.org/10.1016/S0021-9797(02)00160-1. ##
[59]. Chaari, I., Medhioub, M., Jamoussi, F., & Hamzaoui, A. H. (2021). Acid-treated clay materials (Southwestern Tunisia) for removing sodium leuco-vat dye: Characterization, adsorption study and activation mechanism. Journal of Molecular Structure, 1223, 128944. doi.org/10.1016/j.molstruc.2020.128944. ##
[60]. Sun, T., Chen, J., Zhou, C., & Lei, X. (2013). Specific surface area and oil adsorption of calcinated kaolin clay. Journal of the Chinese Ceramic Society, 41(5), 685-690. doi.org/10.7521/j.issn.0454–5648.2013.05.17. ##
[61]. El-Zahhar, A. A., & Al-Hazmi, G. A. (2015). Organically modified clay for adsorption of petroleum hydrocarbon. Eur Chem Bull, 4(2), 87-91.  ##
[62]. Viraraghavan, T., & Mathavan, G. N. (1990). Treatment of oily waters using peat. Water Quality Research Journal, 25(1), 73-90. doi.org/10.2166/wqrj.1990.005. ##