Depositional History of Gachsaran Formation (Cap Rock of Asmari Reservoir) at Ab Teymur Oil Field

Document Type : Research Paper

Abstract

Gachsaran Formation with 700 meters thickness is a cap rock for Asmari reservoir at Ab Teymur Oil Field in Dezful Embayment. It is mainly composed of anhydrite, halite and grey to red marl with carbonate intebeds. This research has been done based on gamma-ray logs, graphic well logs, petrography of 200 thin sections of cuttings as well as Scanning Electron Microscope (SEM) analysis with EDX attachment. The Gachsaran Formation consists of many small cycles with high frequency that may have formed during fluctuation of shallow water resulted from glacial processes, tectonic activities as well as deposition of plastic sediments and subsidence in the Zagros foreland basin. Each cycle usually begin with lagoonal limestone and marl during trangressive phase and continue with evaporites that formed during regressive phase. At this stage, sabkha is formed and deposition of anhydrite started. Salt pans are formed during the last period of regression in central part of basin and affected by flooding, concentration, and desiccation stages. Sedimentary cycles of Gachsaran Formation are very similar to many ancient and recent evaporites such as Arab Formation and recent sabkha environment in Persian Gulf.

Keywords


[1] Grunau H.R., “A worldwide look at the cap-rock problem”, Journal of Petroleum Geology, Vol. 103, pp. 245-266, 1987.
[2] Versfelt Jr P.L., “Major hydrocarbon potential in Iran”, in: Downey M.W., Threet J.C. & Morgan W.A., (Eds.), Petroleum provinces of the twenty-first century, American Association Petroleum Geologists Memoir 74, pp. 417-427, 2001.
[3] McQuillan H., “Fracture-controlled production from the Oligocene-Miocene asmari formation in Gachsaran and Bibi Hakimeh fields, Southwest Iran”, in: Roehl P.0. & Choquette P.W. (Eds.), Carbonate petroleum resevoirs: New York, Springer-Verlag, pp. 511-523, 1985.
[4] مطیعی ه.، چینه‌شناسی زاگرس، سازمان زمین‌شناسی و اکتشافات معدنی کشور، 536 صفحه، 1370.
[5] مطیعی ه.، پوش سنگ، گزارش شماره پ-3932، شرکت ملی مناطق نفتخیز جنوب، 115 صفحه، 1364.
[6] قلی‌زاده گللو ق.، ارزیابی پوش سنگ (بخش یک سازند گچساران) مخزن آسماری در میدان نفتی آغاجاری، پایان‌نامه کارشناسی ارشد، دانشگاه شهید چمران اهواز، 158 صفحه، 1386.
[7] محمدی ی.، ارزیابی پوش سنگ (بخش یک سازند گچساران) مخزن آسماری در میدان نفتی کوپال، پایان‌نامه کارشناسی ارشد، دانشگاه شهید چمران اهواز، 149 صفحه، 1386.
[8]حاجب ر.، مطالعه اختصاصات سنگ‌شناسی بخش‌های پنجم و ششم سازند گچساران در ناحیه دزفول شمالی، گزارش داخلی شرکت ملی مناطق نفت‌خیز جنوب- اهواز، 1366.
[9] Flugel E., Microfacies of carbonate rocks. Analysis, Interpretation and Application New York، Springer-Verlag, 976 p, 2004.                                                                                                                                    
[10] Dunham R.J., “Classification of carbonate rocks according to depositional texture”, In: Ham W.H. (Ed.), Classification of Carbonate Rocks: A Symposium, American Association of Petroleum Geologists Mem. 1, pp.108-121, 1962.
[11] Maiklem W.R., Bebout D.G., & Glaister R.P., “Classification of anhydrite- a practical approach”, Bulletin of Canadian Petroleum Geology, Vol. 17, pp. 194-233, 1969.
[12] Kendall A.C. & Harwood G.M., “Marine evaporates, arid shorelines and basins”, in: Reading H.G. (Ed), Sedimentary Environments, Facies and Stratigraphy, Blackwell Sciencific Publication Oxford, pp. 281-324, 1996.
[13] Michalzic D., “Lithofacies, diagenetic spectra and sedimentary cycles of Messinian Late Miocene-evaporate in SE Spaine”, Sedimentary Geology, Vol. 106, pp. 203-222, 1996.
[14] Biernacka J., Borysiuk K., & Raczynski P., “Zechstein Ca1 limestone-marl alternations from the North-Sudetic Basin Poland”, depositional or diagenetic rhythms? Geological Quarterly, Vol. 49, pp. 1–14, 2005.
[15] Erlick M. & Hinnov L.A., “Millennial–scale climate origins for stratification in Cambrian and Devonian deep
water rhythmites, western USA”, Palaeogeography, Palaeoclimatography, Palaeoecology, Vol. 123, pp. 353-372, 1996.
[16] Riding R., “Microbial carbonat: the geological record of calcified bacterial allgal mats and biofilm”, Sedimentology, Vol. 47, pp. 179-214, 2000.
[17] Alsharhan A.S. & Kendall C.G.St.C., “Holocene coastal carbonates and evaporates of the southern Arabian Gulf and their ancientan analogues”, Earth Science Reviews, Vol. 61, pp. 191–243, 2003.
[18] El Tabakh M., Mory A., Schreiber B.C., & Yasin R., “Anhydrite cement after dolomitization of shallow marine Silurian carbonate of the Gascoyne Platform, Southern Carnnarvon Basin, Western Australia”, Sedimentary Geology, Vol. 164, pp. 75-87, 2004.
[19] Gao G. & Land L.S., “Early ordivician cool creek dolomite, middle Arbuckle group, Slick Hills, SW Oklahama, USA, orgine and modification”, Journal of Sedimentary. Petrolology, Vol. 61, pp. 1979-1990, 1991.
[20] Saler A.H. & Henderson N., “Distribution of porosity and permability in platform dolomites-insight from the Permian of Texas”, American Association of Petroleum Geologists Bulletin, Vol. 82, pp. 1528-1550, 1998.
[21] Sonnefeld P., Brines & Evaporites, Acadamic Press, Orlando, 613 p., 1980.
[22] Kasprzyk A., “Diagenetic alteration of Badenian sulfate deposits in the Carpathian Foredeep Basin, Southern Poland: process and their succession”, Geological Quaterly, Vol. 49, pp. 305-316, 2005.
[23] Yechieli Y., & Wood W.W, “Hydrogeologic processes in saline systems, playas, sabkhas, and saline lake”, Earth Science Reviews, Vol. 58, pp. 343–365, 2002.
[24] باوی عویدی  ع.، امیری بختیار ح.، شناخت منشاء و بررسی فرایندهای دیاژنزی طبقه انیدریتی راهنمای A بخش یک سازند گچساران در میادین نفتی حوضه رسوبی زاگرس و مقایسه آنها با حوضه‌های تبخیری قدیمه، دوازدهمین انجمن زمین‌شناسی ایران، صفحه 761، 1387.
[25] Melvin J.L., Evaporates, petroleum and mineral resources, Elsevier Science Publishing Company, 556 p, 1991.
[26] Lowenstain T.K. & Hardie L.A., “Criteria for the recognition of salt-pan evaporate”, Sedimentology, Vol. 32, pp. 627-644, 1985.
[27] Warren J.K., Evaporates: Sediments, Resources and Hydrocarbons, Springer-Verlag Berlin. 1035 p, 2006.
[28] Einsele G., Sedimentary Basin, Evolution, Facies, and Sediment Budget, Springer-Verlag Berline Heidelberg, 792 p, 2000.
[29] Bahroudi A., & Koey H.A., “Tectono-sedimentary framework of the Gachsaran formation in the Zagros foreland basin”, Marine and Petroleum Geology, Vol. 21, pp. 1295-1310, 2004.
[30] Tucker M.E., Sedimentary petrology, 3rd Ed., Blackwell, Oxford, 260 p, 2001.
[31] Tucker M.E., “Sabkha cycles, stacking and controls, Gachsaran (Lower Fars/Fata) Formation, Miocen, Mesopotamian basin, Iraq”, Neues jahrbuch Geologisch und Pplaonatologisch Abhandlung, Vol. 124, pp. 45-69, 1999.
[32] Erlick M., “Sequence stratigraphy and platform evolution of Lower–Middle Devonian carbonates Eeastern Great basin”, Geol. Soc. Am. Bull, Vol. 103, pp. 392-416, 1996.
[33] Orti F. & Salvany j.M., “Coastal salina evaporates of the Triassic-Liassic boundary in the Iberian  peninsula, the Alacon borehole”, Geological acta, Vol. 2, No. 4, pp. 291-304, 2004.
[34] Mial A.D., The geology of stratigraphy sequence, Speringer-Verlag, Berlin, 433 p. 1997.
[35] عبدالهی فرد ا.، مدل‌های ساختاری جنوب خوزستان با استفاده از داده‌های لرزه‌نگاری بازتابی، رساله دکتری، دانشگاه شهید بهشتی تهران، 174 صفحه، 1385.
[36] Alsharhan A.S. & Kendall C.G.St.C., “Holocene carbonate/evaporates of Abu Dhabi, and their Jurassic ancient analogs”, in: Barth H.J. & Boer B.B. (Eds.), Sabkha Ecosystems, Kluwer Academic Publishers, pp.187–202
[37] Haq B.U., Hardenbol J. & Vail, P.R., “Chronology of fluctuating sea levels since thr Triassic (250 million years ago to present)”, Science, Vol. 235, pp. 1156-1167, 1987.