Static Three Dimensional Simulation and Estimation of Reservoir Parameters Using Geostatistical Methods in One of Iranian Reservoirs

Document Type : Research Paper

Authors

1 Islamic Azad University, Science and Research Branch of Tehran, Tehran, Iran

2 Research Institute of Petroleum Industry, Campus of Research and Development in Upstream Petroleum Industry, Tehran, Iran

Abstract

When we are talking about economic decisions concerning management of an exploratory field or reservoir, undoubtedly, the correct understanding and realistic explanation of reservoir can lead us to make valuable decisions and choosing appropriate plan in order to improve reservoir management and exploitation; Recoverable oil in place is the most important factor which affects these decisions. This study has been performed in order to make a three dimensional model of structure, stratigraphy, and petrophysical properties of one of Southern Iran reservoirs. Well logging and petrographic data as well as core analysis information were combined and put into  an integrated workflow to took advantage of them to build probabilistic models of properties like porosity and water saturation (SW), using geostatistical routines such as Kriging and Sequential Gaussian Simulation (SGS). Comparison of these methods clearly shows that results of Sequential Gaussian simulation are more acceptable. Finally, volumetric calculations have done using the most realistic model outputs and parameters. The averages of porosity, SW and oil in place have estimated 21%, 52%, and 270 million barrel respectively.
 

Keywords


1]. Jones R. R., McCaffrey K. J. W., Clegg P., Wilson R. W., Holliman N. S., Holdswoth R. E., Imber J. and Waggott S., 2009. “Intergration of reginal to outcrop digital data: 3D visualization of multi-scale geological models”, J. Computers & Geosciences, Vol. 35.
[2]. Deutsch C. V. and Journel A. G., GSLIB: Geostatical Software Library and user›s guide, Oxford University Press, New York, 1992.
[3]. Yeten B. and Gumrah F., “The use of fractal geostatistics and artificial neural networks for carbonate reservoir characterization”, transport in porous media, Vol. 41, pp. 173, 195, 2000.
4] Kaufmann o. and Martin T., “3D geological modeling from boreholes, cross sections and geological maps, application over former natural gas storages in coal mines”, J, computers & Geoscience, Vol. 34, pp. 278-290, 2008.
[5] Valcarce G. Z., Zapata T., Ansa A. and Selva G., “Three-dimensional structural modeling and its application for development of the El Porto´n field”, Argentina, AAPG Bulletin, Vol. 90, 307-319, 2006.
[6]. آقابابائی ح.، مدل‌سازی زمین آماری مخازن هیدروکربوری، رساله دکتری، دانشکده مهندسی معدن، دانشگاه صنعتی سهند ارومیه، 1388.
[7]. مطیعی ه.، زمین‌شناسی ایران، زمین‌شناسی زاگرس، انتشارات سازمان زمین‌شناسی کشور، ص536، 1388.
[8]. Holden L., Mostad P., Nielsen B. F., Gjered J., Townsend C. and Ottesen, S., “Stochastic Structural Modeling”, J. Mathematical Geology, Vol.35, No. 8,pp. 899-914, 2003.
[9]. Schlumberger, Petrel Introduction course, Petrel, pp. 555, 2008
[10]. Schlumberger, Petrel introduction course, Schlumberger information solutions, 2006.
[11]. Schlumberger, Seismic-to-Simulation Software, Property Modeling Course, pp. 503, 2009.
[12]. Dean L., “Reservoir Engineering for Geologists”, Part3-Volumetric Estimation, Reservoir Issue11, pp. 20, 2007.
[13]. Schlumberger, “Property modeling course”, Schlumberger information solutions, 2004.
[14] حسنی پاک ع، زمین آمار (ژئواستاتیستیک)، انتشارات دانشگاه تهران، 1388.
[15] رندو جی. ام، اصول زمین آماری، ترجمه مهندس علی اصغر خدایاری، انتشارات جهاد دانشگاهی دانشکده فنی تهران،1371.
[16]. Deutsch C. V. and Cockerman P. W., “Geostatistical Modeling of Permeability with Annealing Co-simulation (ACS)”, SPE28413, 1994.
[17]. Kamali M. R., Omidvar A. and Kazemzadeh E., “3D Geostatistical Modeling and Uncertainty Analysis in a Carbonate Reservoir”, SW Iran, Journal of Geological Research, Hindawi Publishing Corporation, Vol. 2013, pp. 7, 2013.