[1]. نجاری س.، علیزاده ب.، کدخدایی علی.، "تخمین کل کربن آلی (TOC) توسط روشهای شبکه عصبی مصنوعی و log R ∆ در میدان گازی پارس جنوبی"، بیست و نهمین گردهمایی علوم زمین، سازمان زمین شناسی و اکتشافات معدنی کشور، تهران، ایران، 1389.
[2]. Passey O. R., Moretti F. U. and Stroud J. D., “A practical modal for organic richness from porosity and resistivity logs”, American Association of Petroleum Geologists Bulletin 74, pp.1777-1794. 1990
[3]. Kamali M. R. and Mirshady A. A., Total organic carbon content determined from well logs using Δ log R and neuro-fuzzy techniques. J. Petrol. Sci. Eng. 45, pp. 141–148. 2004.
[4]. Huang Z., Williamson M. A., “Artificial neural network modeling as an aid to source rock characterization”, Marine and Petroleum Geology 13 (2), pp. 227-290. 1996
[5]. Kadkhodaie-Ilkhchi A., Rahimpour-Bonab H. and Rezaee M. R., “A Committee Machine with Intelligent Systems for Estimation of Total Organic Carbon Content from Petrophysical Data: An Example from the Kangan and Dalan Reservoirs in South Pars Gas Field”, Iran. Computers & Geosciences 35, 459-474,2009
[6]. Kashfi M. S., “Greater Persian Gulf Permian–Triassic stratigraphic nomenclature requires study”, Oil and Gas Journal (Tulsa) 6, pp. 36-44,2000
[7]. Ji C. Y., “Land-use classification of remotely sensed data using Kohonen self-organizing feature map neural networks”, Photogrammetric Engineering and Remote Sensing 66, pp. 1451–1460. 2000,
[8]. Vilmann T., Merenyi E. and Hammer B., “Neural maps in remote sensing image analysis”, Neural Networks 16, pp. 389-403. 2003.
[9]. Fayos J. and Fayos C., “Wind data mining by Kohonen neural networks”, PLoS ONE 2, pp. 210. 2007.
[10]. Cassano E. N., Lynch A. H., Cassano J. J. and Koslow M. R., “Classification of synoptic patterns in the western Arctic associated with extreme events at Barrow”, Alaska, USA. Climate Research 30, pp. 83-97. 2006.
[11]. Cole ou T., Poupon M. and Azbe K., “Unsupervised seismic facies classification: a review and comparison of techniques and implementation”, The Leading Edge 22, pp. 942–953, 2003.
[12]. Strecker U. and Uden R., “Data mining of 3D poststack seismic attribute volumes using Kohonen self-organizing maps”, The Leading Edge 21, pp. 1032-1037. 2002.
[13]. Kohonen T., Kaski S. and Lappalainen H., “Self-organized formation of various invariantfeature filters in the adaptive-subspace SOM”, Neural Computation 9, pp. 1321-1344. 1997.
[14]. Mukherjee A., “Self-organizing neural network for identification of natural modes”, The Journal of Computing in Civil Engineering 11 (1), pp. 74-77. 1997.
[15]. Astela A., Tsakovski S., Barbieri P. and Simeonov V., “Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets”, Journal of Water Research 41, pp. 4566-4578, 2007.
[16]. Kohonen T., “Self-Organizing Maps, Springer series in Information Sciences”, New York, Springer-Verlag, Vol. 30, pp. 501, 2001.
[17]. Tan P-N., “Steinbach M. and Kumar V. Introduction to Data Mining”, Pearson Addison Wesley, pp. 769, 2006.
[18]. Bhatt A ., Helle H. B., “Committee neural networks for porosity and permeability prediction from well logs”, Geophysical Prospecting 50, pp. 645-660. 2002.
[19]. Bishop C. M., “Neural Networks for Pattern Recognition”, Clarendon Press, Oxford, pp. 670, 1995.