The Promotion Effect of Tetra n-Butyl Ammonium Fluoride (TBAF) on Methane Hydrate Formation

Document Type : Research Paper

Authors

1 Faculty of Engineering, University of Bojnord

2 Department of Chemical Engineering, Tarbiat Modares University, Tehran

3 Research Institute of Paris Cedex, Paris, France

4 Department of Chemistry and Chemical Engineering, Buinzahra Branch, Islamic Azad University, Buinzahr

Abstract

 
One of the main limitations in the process of hydrate formation for its positive application is the requirement of high pressures and low temperatures. Establishing a unit with these conditions is expensive and unsafe. Therefore, finding the methods for the promotion of this process is very important. The utilization of ammonium salts in water noticeably promotes the hydrate formation conditions. One of these salts is tetra n-butyl ammonium fluoride (TBAF). In this research, the equilibrium data of semi-clathrate hydrate for the system of water/TBAF/methane have been measured and reported. Three concentrations of TBAF (2, 5, and 15 wt.%) were used for the experimental measurements. The comparison of the measured data with the simple hydrate (the hydrate for the system of water/methane) equilibrium data showed the high promotion effect of TBAF on methane hydrate formation. By increasing the concentration of TBAF, its promotion effect increases and the hydrate formation P-T curve shifts to the right side.

Keywords


[1]. Sloan J. E. D. and Koh K. A., Clathrate hydrates of natural gases, 3rd ed. CRC Press, Taylor & Francis Group, 2008.
[2]. Ogawa T., Ito T., Watanabe K., Tahara K. I., Hiraoka R., Ochiai J. I., Ohmura R. and Mori Y. H., “Development of a novel hydrate-based refrigeration system: a preliminary overview”, Appl. Therm.Eng., Vol 26, pp. 2157–2167, 2006.
[3]. Strobel T. A., Hester K. C., Koh C. A., Sum A. K. and Sloan Jr. E. D., “Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage”, Chem.Phys.Lett. Vol. 478, 97–109, 2009.
[4]. Tsuda T., Ogata K., Hashimoto S., Sugahara T., Moritoki M. and Ohgaki K., “Storage capacity of hydrogen in tetrahydrothiophene and furan clathrate hydrates”, Chem.Eng.Sci. Vol. 64, pp. 4150– 4154, 2009.
[5]. Florusse L. J., Peters C. J., Schoonman J., Hester K.C., Koh C., Dec S., Marsh K. and Sloan E., “Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate”, Science Vol. 306, pp. 469– 471, 2004.
[6]. Linga P., Kumar R. and Englezos P., “The clathrate hydrate process for post and pre-combustion capture of carbon dioxide”, J. Hazard. Mater. Vol. 149, pp. 625– 629, 2007.
[7]. Belandria V., Eslamimanesh A., Mohammadi A. H., The´veneau P., Legendre H. and Richon D., “Compositional analysis and hydrate dissociation conditions measurements for carbon dioxide + methane + water system”, Ind.Eng.Chem. Res. Vol. 50, pp. 5783–5794, 2011a.
[8]. Belandria V., Eslamimanesh A., Mohammadi A. H. and Richon D., “Gas hydrate formation in carbon dioxide + nitrogen+ water system: compositional analysis of equilibrium phases”, Ind. Eng.Chem.Res.Vol. 50, pp. 4722–4730, 2011b.
[9]. Kang S. P., Lee H., “Recovery of CO2 from flue gas using gas hydrate: thermodynamic verification through phase equilibrium measurements”, Environ. Sci.Technol. Vol. 34, pp. 4397– 4400, 2000.
[10]. Eslamimanesh A., Mohammadi A. H., Richon D., Naidoo P. and Ramjugernath D., “Application of gas hydrate formation in separation processes: a review of experimental studies”, J. Chem. Thermodyn. Vol. 46, pp 62– 71, 2012.
[11]. Delahaye A., Fournaison L., Marinhas S., Chatti I., Dalmazzone D., Fürst W. and Petitet J. P., “Effect of THF on equilibrium pressure and dissociation enthalpy of CO2 hydrates applied to secondary refrigeration”, Ind. Eng. Chem. Res.Vol, 45, pp 391–397, 2006.
[12]. Fowler D. L., Loebenstein W. V., Pall D. B. and Kraus C. A., “Some unusual hydrates of quaternary ammonium salts”, J. Am. Chem. Soc., Vol. 62, pp. 1140–1142, 1940.
[13]. Aladko E. Ya., Larionov E. G., Rodionova T. V., Aladko L. S. and Manakov A. Yu., “Double clathrate hydrates of tetrabutylammonium fluoride + helium, neon, hydrogen and argon at high pressures”, J. Int. Phenom Macrocycl Chem., Vol. 68, pp. 381–386, 2010.
[14]. Makino T., Yamamoto T., Nagata K., Sakamoto H., Hashimoto S., Sugahara T. and Ohgaki K. “Thermodynamic stabilities of tetra-nbutyl ammonium chloride + H2, N2, CH4, CO2, or C2H6 semiclathrate hydrate systems”, Journal of Chemical & Engineering Data; Vol. 55. No 2, pp. 839-841, 2010.
[15]. McMullan R. K., Bonamico M. and Jeffrey G. A., “Polyhedral clathrate hydrates, V. Structure of tetra-n-butyl ammonium fluoride hydrate”. J. Chem. Phys. Vol. 39 no (12), pp. 3295–3310, 1963.
[16]. Duc N. G., Chauvy F. and Herri J. M., “CO2 Capture by hydrate crystallization - A potential Solution for gas emission of Steelmaking Industry”, Energy Conversion and Management, Vol. 48, 1313–1322, 2007.