An Investigation of Coke Reduction on Stainless Steel 304 Alloy in the Steam Cracking of Heavy Naphtha Using Sulfide Inhibitors

Document Type : Research Paper

Authors

1 Analytical Research Group, Research Institute of Petroleum Industry (RIPI)

2 Faculty of Chemistry, Tabriz University, Tabriz

Abstract

The thermal cracking of hydrocarbons is one of the most important industrial processes producing olefin products including ethylene and propylene as desirable products. The undesirable process is coke formation, which causes several problems in thermal cracking reactors such as heat transfer reduction, increasing the pressure drop in the reactor, increasing fuel consumption, shortening the life of the reactor, and so on. Consequently, such undesirable affects can be decreased by choosing a proper alloy in reactor construction, using right feed, or some inhibitors. To prevent the formation of coke, some inhibitors were investigated. The variety of experiments showed that inhibitors like dimethyl disulfide and carbon disulfide could strongly decrease the coke formation. In this article, the reduction of coke formation and structural changes were investigated by using heavy naphtha as the normal feedstock entering the reactor, the above sulfide inhibitors, and stainless steel 304 as well as employing scanning electron microscope (SEM/EDAX) as an analysis technique.
 

Keywords


[1]. شجاع س. م. ر.، بررسی کاهش نشست کک برروی سطوح فلزی با آلیاژهای صنعتی نیکل در کراکینگ حرارتی نفتا با استفاده از بازدارنده های سولفیدی، پایان نامه کارشناسی ارشد، دانشگاه تبریز، ایران، زمستان 1388.
[2]. ماهنامه مشعل شماره 113، نیمه اول شهریور 1376، صفحه 11-15.
organosulfur compounds in the pyrolysis on naphtha in the jet stirred reactor system
, Iran. J. Chem. Eng., 2, pp. 39-50, 2005.
[17]. Chunfei Wu, Williams P.T., “Investigation of coke formation on Ni-Mg-Al catalyst for hydrogen production from the catalytic steam pyrolysis-gasification of polypropylene”, Applied Catalysis B: Environmental, Vol. 96, Issues 1–2, pp. 198-207, 2010.
[18]. Wang, J., Reyniers, M.F., and Marin ,G.B., “Influence of Dimethyl Disulfide on Coke Formation during Steam Cracking of Hydrocarbons”, Ind.Eng.Chem.Res., 46, pp. 4134-4148, 2007.
[19]. Jianxin Z., Hong X., Xiaojian L. and Xiang L., “Influence of the SiO2/S coating and sulfur/phosphorus-containing coking inhibitor on coke formation during thermal cracking of light naphtha”, Fuel Processing Technology, 104, Vol. 104, pp. 198-203, 2012.
[20]. Wang, J., Influence of additives on coke formation during steam cracking, Universiteit Gent Faculteit Ingenieurswetenschappen Vakgroep hemische roceskunde en Technische Chemie Laboratorium voor Petrochemische Techniek, 2006.
[21]. Cai H., Krzywicki A., Oballa M. C., “Coke formation in steam crackers to ethylene production”, Chem. Eng. Process., 41, pp. 199-214, 2002.
[22]. Albright L. F. and Crynes L. L., “Pyrolysis of propane in tubular flow reactors. kinetics and surface effects”, Ind.Eng.Chem.Process Des.Dev., 8, pp. 25-30, 1969.
[23]. Sacco, A., and Caulnare, J. C., “Coke Formation on Metal Surface”, Am.Chem.Soc., 202, pp. 92-107, 1982.
[24] Reed L. E., “The effects of sulfur compounds and phillips antifoulants in ethane pyrolysis”, ACS Symposium Series., 40, pp. 564-605, 1995.
[25]. Idem R., Katikaneni S., and Bakhshi N., “Thermal cracking of canola oil: reaction products in the presence and Absence of steam”, Energy & Fuels., 10 (6), pp. 1150-1162, 1996.
[26]. Sadrameli S. M. and Green A. E. S., “Systematics and modeling representation of naphtha thermal cracking for olefin production”, J.Anal.Appl.Pyrolysis., 73, pp. 305-313, 2005.
[27]. Nageswara R. P., and Kunzru D., “Thermal cracking of JP-10: kinetics and product distribution”, Anal. Appl. Pyrolysis., 76(2), pp. 154-160, 2006.
[28]. Reyniers M. F., and Froment G. F., “Influence of metal surface and sulfur addition on coke deposition in the thermal cracking of hydrocarbons, Ind.Eng.Chem., 34, pp. 773-785, 1995.
[29]. Mohamadalizadeh A., Towfighi J. and Karimzadeh R., “Modeling of catalytic coke formation in thermal cracking reactors”, J.Anal.Appl.Pyrolysis, 82(1), pp. 134-139, 2008.
[3]. Lee H. J., Kim K. M., Kim S. H., and Lee C. S., “Effect of steam on coking in the non-catalytic pyrolysis of naphtha components”, Korean J.Chem.Eng., Vol. 21(1), pp. 252-260, 2003.
[4]. Keyvanloo K., Sedighi M. and Towfighi J., “Genetic algorithm model development for prediction of main products in thermal cracking of naphtha: Comparison with kinetic modeling”, Chemical Engineering Journal, 209, Vol. 209 pp. 255-262, 2012.
[5]. Marco W. M. Goethem V., Barendregt S., Grievink J., A. Moulijn J. and Verheijen P. J. T. “Model-based, thermo-physical optimisation for high olefin yield in steam cracking reactors”, Chemical Engineering Research and Design, 88, Vol. 88 pp. 1305-1319, 2010.
[6]. Jahanmiri A., Rahimpour M. R., Mohamadzadeh Shirazi M., Hooshmand N. and Taghvaei H., “Naphtha cracking through a pulsed DBD plasma reactor: effect of applied voltage, pulse repetition frequency and electrode material”, Chemical Engineering Journal, 191, Vol. 191 pp. 416-425, 2012.
[7]. Albright L. F. and Marek J. C., “Mechanistic model for formation of coke in pyrolysis units producing ethylene”, Ind. Chem. Eng. Res., 27,
 
Vol. 27 pp. 755-759, 1988.
[6]. Gornay J., Coniglio L., Billaud F. and Wild G., “Octanoic acid pyrolysis in a stainless-steel tube: What is the role of the coke formed on the wall”, Journal of Analytical and Applied Pyrolysis, 87, Issue 1, Vol. 87 pp. 78-84, 2010.
 
[9]. Seifzadeh Haghighi S., Rahimpour M. R., Raeissi S. and Dehghani O., “Investigation of ethylene production in naphtha thermal cracking plant in presence of steam and carbon dioxide”, Chemical Engineering Journal, Vol. 228 228, pp. 1158-1167, 2013.
 
[10]. Guozhu L., Xuqing W. and Xiangwen Z., Pyrolytic depositions of hydrocarbon aviation fuels in regenerative cooling channels, Journal of Analytical and Applied Pyrolysis, In Press, Corrected Proof, Available online 19 June, Vol. 19, 2013.
 
[11]. Crynes B. L., Albright L. F. and Tan, L. F., “Thermal cracking, encyclopedia of physical science and technology”, 3rd ed., Vol. 16, pp. 613-626, 2002.
 
[12]. Albright L. F. and Marek J. C., “Coke formation during pyrolysis: roles of residence time, reactor geometry, and time of operation”, Ind.Chem.Eng.Res. 27(55), pp. 743-751, 1988.
 
[13]. Albright L. F. and Marek J. C., “Analysis of coke produced in ethylene furnaces: insights on process improvements”, Ind.Chem.Eng.Res., 27(55), pp. 751-755, 1988.
 
[14]. Rahimpour M. R., Jafari M. and Iranshahi D., “Progress in catalytic naphtha reforming process: A review”, Applied Energy, 109, Vol. 109, pp. 79-93, 2013.
 
[15]. Brown A. M. and Hill M. P., “Coke Formation on Metal Surfaces”, ACS Symposium Series. 112, pp.193-222, 1982.
 
[16]. Salari D., Niaei A. Towfighi J., Panahi P. and Nabavi R., Investigation of coke deposition & coke inhibition by