A Comparison between MMFH and Solid Model Performance in Predicting the Effect of Sour Gas on Asphaltene in Petroleum Reservoirs

Document Type : Research Paper

Author

Abstract

In this work, the MMFH model and Solid model performance in predicting sour gas injection effects on the asphaltene formation and precipitation in crude oils is investigated. The asphaltene is the heaviest and the most polar parts of the crude oil. The changes in pressure, temperature, and/or composition can cause instability of the asphaltene in petroleum system and finally lead to asphaltene precipitation and deposition. Herein, two models, i.e. MMFH and Solid models, are investigated to predict asphaltene instability in three real oil samples. The stability of the models and their compatibility with the experimental and field observation are assumed as the model application comparison basis. First, the model parameters are tuned via the experimental data and then the adjusted models are used for predicting the sour gas injection and pressure effects on the asphaltene precipitation. As it can be seen, the MMFH models is better than the solid model (this model is used in the commercial software for reservoir simulation) in both comparison criteria, namely the model stability and compatibility with the other results.
 

Keywords


[1]. Priyanto S., Mansoori G. A. and Suwono A., “Measurement of property relationships of nano-structure micelles and coacervates of asphaltene in a pure solvent”, Chem. Eng. Science, Vol. 56, pp. 6933-6939, 2001.##
[2]. Kawanaka S., Park S. J., and Mansoori G. A., “Organic deposition from reservoir fluids”, SPE Reservoir Engineering Journal, pp. 185-192, 1991.##
[3]. Kawanaka S., Jiang T. S. and Mansoori G. A., Asphaltene deposition and its role in enhanced oil recovery miscible gas flooding, Proceed. The 3rd European Conf. on Enhanced Oil Recovery, Rome, Italy, April (1985).##
[4]. Kawanaka S., Park S. J. and Mansoori G. A. “The role of asphaltene deposition in EOR gas flooding: a predictive technique”, Presented at the SPE/DOE Symposium on Enhanced Oil Recovery, Richardson, TX, SPE 17376, Feb., pp. 15-17, 1988.##
[5]. Hirschberg A., DeJong L. N. J., Schipper B. A. and Meijer J. G., “Influence of temperature and pressure on asphaltene flocculation”, Soc. Petrol. Eng. J., Vol. 24, pp. 283–293, 1984.##
[6]. Flory P. J., “Thermodynamics of high polymer solutions”, J. Chem. Phys., Vol. 10, pp. 51–61, 1942.##
[7]. Mousavi-Dehghani S. A., Mirzayi B., Mousavi S. M. H. and Fasih M. “An applied and efficient model for asphaltene precipitation in production and miscible gas injection processes”, Petroleum Science and Technology, 28:113–124, 2010.##
[8]. Prausnitz J. M., “Molecular thermodynamics of fluid-phase eequlibria”, Second Edition. Mc-Graw Hill Comp, 1986.##
[9]. Nghiem L. X., Hassam M. S. and Nutakki R., “Efficient modeling of asphaltene precipitation”, presented at the SPE Annual Technical Conference and Exhibition, Houston, TX, Oct. pp. 3-6, 1993.##
[10]. میرزایی ب. وفایی سفتی م.، منصوری غ. ع.، موسوی دهقانی س. ع. «بررسی اثرات رسوب آسفالتین بر خواص سنگ مخزن در فرآیند تزریق گاز»، رساله دکتری، دانشگاه تربیت مدرس، 1386.##
[11]. موسوی دهقانی س. ع. بررسی تجربی و ارائه مدل میزان رسوب آسفالتین در مخازن نفتی در اثر تزریق گاز، رساله دکترا؛ دانشگاه تربیت مدرس؛ تهران؛ .1383##
[12]. Miller A. R., “The vapor-pressure equations of solutions and the osmotic pressure of rubber”, Proc. Cambridge Philos. Soc., Vol. 39, pp. 54-67, 1943.##