Estimation of Total Organic Carbon Log Using Ggeochemical and Petrophysical Data by Artificial Neural Networks in Azadegan Oil Field

Document Type : Research Paper

Authors

1 Department of Geology, Science and Research Branch, Islamic Azad University,Tehran

2 Department of Geology, Faculty of Natural Sciences, University of Tabriz, Tabriz

3 Exploration and Production Institute, Research Institute of Petroleum Industry, (RIPI)

Abstract

The amount of total organic carbon (TOC) is one of the major  geochemical  parameters, which is used to evaluate hydrocarbon generation potential of source rocks. Measurement of such an important parameter requires performing tests on small-scale drill cuttings which is too expensive and time-consuming. Meanwhile, it is measured using a limited number of samples. However, petrophysical data are accessible for all drilled wells in a hydrocarbon field. In this paper, artificial neural network technology was used to estimate TOC from petrophysical logs. The correlation coefficient between the estimated and measured TOC data from Rock Eval pyrolysis is 71% ,which is an acceptable value. The results of this study show that artificial intelligence is successful in estimating TOC data. Formation source rocks of the studied oilfield are Kazhdumi and Gadvan which constitute the main source rocks of Iran. The presented methodology is illustrated by using a case study from one well of Azadegan oil field in Abadan plain
 

Keywords


[1]. خسرو تهرانی خ.، "چینه‌شناسی ایران"، انتشارات امیرکبیر1386.##
[2]. درویش‌زاده ع.، "زمین‌شناسی ایران"، انتشارات امیرکبیر1382.##
[3]. کمالی م. ر.، شایسته م.، "مبانی ژئوشیمی در اکتشاف نفت"، انتشارات پژوهشگاه صنعت نفت1387.##
[4]. کمالی م. ر.، قربانی م. ب.، "ژئوشیمی آلی از فیتوپلانکتون‌ها تا تولید نفت"، انتشارات آرین زمین1385.##
[5]. رضایی م.، چهرازی ع.، "اصول برداشت و تفسیر نگارهای چاه‌پیمایی" انتشارات دانشگاه تهران،1385.##
[6.] Tissot B. and Welte D. H., Petroleum formation and occurrence, 2nd ed. Springer Verlag, Berlin 1984.##
[7]. گزارش شرکت ملی نفت ملی ایران سال 1386##
[8]. Hunt J. M., Petroleum Geochemistry and Geology, 2nd ed., W. H. Freeman and Company, New York, pp. 743, 1996 .##
[9]. Behar F., Beaumont V., and B., “Pentea do, rock-eval 6 technology: performances and developments,” Oil & Gas Science and Technology-Rev. IFB, Vol. 56, No. 2, pp.111-134, 2001.##
[10]. Peters K. E., “Guidelines for evaluating petroleum source rock using programmed pyrolysis,” AAPG Bulletin, Vol. 70, pp. 318– 329, 1986.##
[11]. Dellenbach J., Espitalie J., and Lebreton F., Source rock logging, Transactions of 8th European SPWLA Symposium, Paper D, 1983.##
[12]. Al-Qahtani F. A. “Porosity prediction using artificial neural network,” M.Sc. Dissertation, Morgautwn Virginia University, 2000.##
[13]. Callan R., “The essence of neural networks: Southampton Institute,” Prentice Hall Europe, 1999.##
[14]. Meyer B. L. and Nederlof M. H., “Identification of source rocks on wireline logs by density/resistivity and sonic transit time/ resistivity cross plots,” AAPG Bulletin, Vol. 68, pp. 121– 129, 1984.##
[15]. Schmoker J. W., “Determination of organic-matter content of Appalachian Devonian shales from gamma-ray logs,” AAPG Bulletin, Vol. 65, pp. 2165–2174, 1981.##
[16]. Serra O., “Fundamentals of well-logInterpretation,” The Acquisition Logging Data, Vol. 1, Elsevier. pp. 679, 1986.##