Aromatic Content Determination of Kerosene by Proton and Carbon Nuclear Magnetic Resonance Spectroscopy

Document Type : Research Paper

Author

مدیر گروه علوم

Abstract

One of the most characteristic parameters of an organic hydrocarbon is aromatic and aliphatic contents determination. Aromaticity content of an organic hydrocarbon can affect on variety of properties such as boiling range, viscosity, stability, heat resistance and compatibility with other materials. Nuclear magnetic resonance spectroscopy (NMR) is the most efficient and effective technique for determination of protons (1H) and carbons (13C) aromatic and aliphatic content in organic hydrocarbons. Presence of hydrogen and carbon atoms in hydrocarbon materials such as, kerosene causes the nuclear magnetic resonance spectroscopy studies to be performable on the atoms. Kerosene is the most known materials in oil industries that it is including wide range organic hydrocarbons. Depends on source of this material, aromatic and aliphatic contents of kerosene can be different. Nuclear magnetic resonance spectroscopy results show that kerosene (for example from Aldrich Co.) has 3.589% aromatic hydrogens and 9.462% aromatic carbons.
 

Keywords


[1]. Speight J. G., “The Chemistry and Technology of Petroleum,” 5th ed., CRC Press, 2014.##
[2]. Altun S., “Effect of the degree of unsaturation of biodiesel fuels on the exhaust emissions of a diesel power generator,” Fuel, Vol. 117, pp. 450–457, 2014.##
[3]. Cheng J., Li T., Huang R., Zhou J., and Cen K., “Optimizing catalysis conditions to decrease aromatic hydrocarbons and increase alkanes for improving jet biofuel quality,” Bioresource Technol., Vol. 158, pp. 378–382, 2014.##
[4]. Lohse D. J., Hadjichristidis N., Tsou A. H.,, Wright P. J., Ho S. C. H. and Schuenzel P. E., “Process for making a saturated dendritic hydrocarbon polymer,” US Patent, 8623980 B2, 2014.##
[5]. ضیایی ف.، "کاربرد رزونانس مغناطیسی هسته در پلیمرها"، پژوهشگاه پلیمر و پتروشیمی ایران، تهران، 1392.##
[6]. Ziaee F. and Nekoomanesh M., “Kinetic investigation and characterization of styrenebutyl crylate solution copolymerization,” Iran. Polym. J., Vol. 8, pp. 83-90, 1999.##
[7]. Leta D. P., Sirota E. B., Corcoran E. W., Kovvali A. S., Brown S. H. and Cundy S. M., “Enhancement of saturates content in heavy hydrocarbons utilizing ultrafiltration,” US Patent, 8177965 B2, 2012.##
[8]. Juran S. A., Johanson G., Ernstgård L., Iregren A. and Van Thriel C., “Neurobehavioral performance in volunteers after inhalation of white spirits with high and low aromatic content, Arch. Toxicol., Vol. 88, pp. 1127-1140, 2014.##
[9]. Elsherbiny M. E. and Brocks D. R., “The ability of polycyclic aromatic hydrocarbons to alter physiological factors underlying drug disposition,” Drug. Metab. Rev., Vol. 43, pp. 457- 475, 2011.##
[10]. Lorenzi D., Entwistle J. A., Cave M., and Dean J. R., “Determination of polycyclic aromatic hydrocarbons in urban street dust: implications for human health,” Chemosphere, No. 83, pp. 970–977, 2011.##
[11]. Rojo Camargo M. C., Antoniolli P. R. and Vicente E., “Evaluation of polycyclic aromatic hydrocarbons content in different stages of soybean Oils processing,” Food Chem., No. 135, pp. 937–942, 2012.##
[12]. Farrington J. W. and Takada H., “Persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs), and plastics: examples of the status, trend, and cycling of organic chemicals of environmental concern in the ocean,” Oceanography, No. 27, pp. 196–213, 2014.##
[13]. ASTM D3238-95, “Standard Test Method for Calculation of Carbon Distribution and Structural Group Analysis of Petroleum Oils by the n-d-M Method,” 2010.##
[14]. Gaweł B., Eftekhardadkhah M. and Øye G., “Elemental composition and fourier transform infrared spectroscopy analysis of crude oils and their fractions,” Energ. Fuel., No. 28, pp. 997–1003, 2014.##
[15]. Solum M. S., Mayne C. L., Orendt A. M., Pugmire R. J., Adams J. and Fletcher T. H., “Characterization of Macromolecular Structure Elements from a Green River Oil Shale,” I. Extracts, Energ. Fuel., No. 28, pp. 453−465, 2014.##
[16]. Fletcher T. H., Gillis R., Adams J., Hall T., Mayne C. L., Solum M. S. and Pugmire R. J., “Characterization of macromolecular structure elements from a green river oil shale,” II. Characterization of Pyrolysis Products by 13C NMR, GC/MS, and FTIR, Energ. Fuel., 28(1), pp. 453-465, Dec. 2014. ##
[17]. Dost K. and İdeli C., “Determination of polycyclic aromatic hydrocarbons in edible oils and barbecued food by HPLC/UV–Vis detection,” Food Chem., No. 133, pp. 193–199, 2012.##
[18]. Cao X., Yang J. and Mao J., “Characterization of kerogen using solid-state nuclear magnetic resonance spectroscopy: a review,” Int. J. Coal Geol., No. 108, pp. 83-90, 2013.
[19]. Molina D., Angulo R., Dueñez F. Z. and Guzmán A., “Partial Least Squares (PLS) and Multiple Linear Correlations between Heithaus Stability Parameters (Po) and the Colloidal Instability Indices (CII) with the 1H Nuclear Magnetic Resonance (NMR) Spectra of Colombian Crude Oils,” Energ. Fuel., No. 28, pp. 1802–1810, 2014.
[20]. Mullen C. A., Strahan G. D. and Boateng A. A., “Characterization of various fast-pyrolysis bio-oils by NMR spectroscopy,” Energ. Fuel., no. 23, pp. 2707–2718, 2009.
[21]. ASTM D5292–99, “Standard test method for aromatic carbon contents of hydrocarbon oils by high resolution nuclear magnetic resonance spectroscopy,” 2009.
[22]. Lee S. W. and Glavincevski B., “NMR method for determination of aromatics in middle distillate oils,” Fuel Process. Technol., No. 60, pp. 81–86, 1999.
[23]. Pavia D. L., Lampman G. L., Kriz G. S. and Vyvyan J. R., “Introduction to spectroscopy,” Fourth edition, Cengage Learning, 2009.