Efficiency of Xanthan Prepared Using Native Strains for Application in Drilling Fluids

Document Type : Research Paper

Authors

1 Biology Dept., Faculty of Science, Alzahra University, Tehran

2 Research Institute of Petroleum Industry

Abstract

Nowadays, biopolymers are one of the most important parts of drilling fluids. Xanthan, a biopolysaccharide with high molecular weight, is produced from Xanthomonas campestris through fermentation processes. In this research, xanthan was produced from three strains of Xanthomonas campestris, b82, 1706DSMZ, SAM3301 and its application potential as a part of drilling fluid was evaluated. In a simultaneous study for decreasing the cost of final product, xanthan production was evaluated by one of these strains using sugar cane molasses. To study the efficiency in drilling fluids, these products were separately dissolved in fresh water, seawater (NaCl 40 g/L), saturated water (NaCl 400 g/L) and KCl 35 % (KCl 350g/L) in 0.5, 1 and 2 lbb concentrations and assessed before and after roll at 121°C. The best result was generally obtained using 2 ppb concentrations of biopolymers. Biopolymer produced by the strains b82 and SAM3301 showed the best efficiency according to high apparent viscosity (AV), Plastic viscosity (PV), Yield point (YP) and also increasing these parameters after role plus producing higher YP/PV ratio. The latter showed greater applicability because of its increased thermal stability and lower foaming. Xanthan sample produced using molasses had the best efficiency in sea water (higher YP/PV ratio), but its showed weaker properties than commercial xanthan (XC).

Keywords


منابع
[1] Rogers W. F., Composition and Properties of Oil Well Drilling Fluids, 3th Ed, Gulf Publishing Company, 1953.
[2] نصیری م.، اشرفی‌زاده، ن.، استخراج نشاسته سیب زمینی و کاربرد آن در گل‌های حفاری پایه آبی، مجله مهندسی شیمی ایران، شماره 39، صفحات 38-18، 1388.
[3] سعیدی م.، بررسی تأثیر مواد فعال سطحی بر ترشوندگی جامدات سیال حفاری امولسیونی معکوس، مجله پژوهش نفت، شماره 58، صفحات 64-70، ۱۳۸۷.
[4] Baba Hamed S. & Belhadri M., “Rheological properties of biopolymers drilling fluids”, Journal of Pet Sci and Eng., Vol. 67, pp. 84–90, 2009.
[5] Shah A.K. & Ashtaputre A., “Evaluation of rheological properties of the exopolysaccharide of Sphingomonas paucimobilis GS-1 for application in oil exploration”, Jounal of Ind Microbio & Biotech, Vol. 23, pp. 442-445, 1999.
[6] Audibert-Hayet A. & Dalmazzone C., “Surfactant system for water-based well fluids”, Colloid Surface. A: Physicochemistry Eng. Aspects, Vol. 288, pp. 113–120, 2006.
[7] Garcia-Ochoa F., Santos V. E., Casas J.A. & Gomez E., “Xanthan gum: production, recovery, and properties”, Biotech Adv., Vol. 18, pp. 549-579, 2000.
[8] سالاریه م.، و خراط ر.، بررسی کاربرد پلیمر DRISPAC برای تغییر رفتار رئولوژیکی گل حفاری، مجله علوم و تکنولوژی پلیمر، سال سیزدهم، شماره دوم، صفحات 83-88، 1379.
[9] Glazer A. N. & Nikaido H., Microbial biotechnology, Freeman and company, pp. 272-282, 1995.
[10] Song K.W., Kim Y.S. & Chang G.S., “Rheology of Concentrated Xanthan Gum Solutions: Steady Shear Flow Behavior”, Fiber Polym., Vol. 7, No.2, pp. 129-138, 2006.
[11] Haze A., Process for producing purified xanthan gum, United States Patent: 5473062, 1995.
[12] Kayacier A. & Dogan M., “Rheological properties of some gums-salep mixed solutions”, J. Food Eng., Vol. 72, pp. 261-265, 2006.
[13] Shatwell K.P. & Sutherland l.W., “Influence of acetyl and pyruvate substituents on the solution properties of xanthan polysaccharide”, Int. J. Biol Macromol., Vol. 12, pp. 71-78, 1990.
[14] سلیمانی م.، بررسی کارآیی پلیمر XC در سیالات حفاری، فصلنامه تحقیق، ضمیمه کاربردی، شماره 18/8، صفحات 36-52، 1374.
[15] Roukas T., “Pretreatment of beet molasses to increase pullulan production”, Process Biochem., Vol. 33, pp. 805-810, 1998.
[16] Xie W. & Lecourtier J., “Xanthan behavior in water-based drilling Fluids”, Polym. Degrad. and Stabil., Vol. 38, pp. 155-164, 1992.
[17] Benyounes K., Mellak A. & Benchabane A., “The effect of carboxymethylcellulose and xanthan on the rheology of bentonite suspensions”, Energ Source., Part A: Recovery, Utilization and Environmental Effects, Vol. 32 (17), pp. 1634-1643, 2010.
[18] Borges C.D., Vendruscolo C.T., Martins A.L. & Lomba R.F.T., “Rheological behaviour of xanthan produced by Xanthomonas arboricola pv pruni for application in fluid of oil well perforation”, polymer, Vol. 19 (2), pp. 160-165, 2009.
[19] Hamida T., Kuru E. & Pickard M., “Filtration loss characteristics of aqueous waxy hull-less barley (WHB) solutions”, Journal of Pet. Sci. and Eng., Vol. 72 (1-2), pp. 33-41, 2010.
[20] Yuanzhi Q., Xiaoqing L., Laifang Z. & Yinao S., “Polyoxyalkyleneamine as shale inhibitor in water-based drilling fluids”, Appl. Clay Sci., Vol. 44, pp. 265–268, 2009.
[21] Rottava I., Batesini G., Silva M., Lerin L., Oliveira D., Padilha F., Toniazzo G., Mossi A., Cansian R., Luccio M. & Treichel H., “Xanthan gum production and rheological behavior using different strains of Xanthomonas sp”., Carbohyd. Polym., Vol. 77, pp. 65–71, 2009.
[22] صعودی م.، تولید صمغ زانتان با سویه‌های بومی Xanthomonas campestris ساکن خاک، مجله علوم دانشگاه الزهرا، شماره 12، صفحات 45-55، 1369.
[23] علی مددی ن.، غربالسازی و گزینش Xanthomona campestris spp. مولد بیوپلیمر از خاک ، پایان نامه کارشناسی ارشد، دانشگاه الزهرا(س)، ایران، مهر 1388.
[24] Tavallaie R., Talebpour Z., Azad J. & Soudi M.R., Simultaneous determination of pyruvate and acetate levels in xanthan biopolymer by infrared spectroscopy: effect of spectral pre-processing for solid-state analysis, Food Chem., Article in pressو 2010.
[25] Shaabani A., Maleki A., Soudi M.R. & Mofakham H., “Xanthan sulfuric acid: A new and efficient bio-supported solid acid catalyst for the synthesis of a-amino nitriles by condensation of carbonyl compounds, amines”, and trimethylsilylcyanide, Catal. Commun., Vol. 10, pp. 945–949, 2009.
[26] Borges C.D., de Paula R., Feitosa J.C.M. & Vendruscolo C.T., “The influence of thermal treatment and opera