Development of Hybrid ACOR-BP Algorithm for Estimation of Shear Wave Velocity from Porosity Logs

Document Type : Research Paper

Authors

1 Department of Geology, College of Science, Ferdowsi University of Mashhad, Iran

2 Department of Geology, College of Science, University of Tehran, Iran

3 Department of Geology, Faculty of Natural Sciences, University of Tabriz, Iran

Abstract

Reservoir characterization is an important step for exploration and development of oil and gas fields. Shear and compressional wave velocity can provide the accurate data for petro-acoustic studies from a hydrocarbon reservoir. Compressional wave velocity (Vp) is very easily obtained from sonic logs that are available in most of oil and gas wells, but some wells, especially old wells, may not have shear wave velocity (Vs) data. In this research, shear wave velocity was predicted from porosity well log data (sonic, neutron and density) using Hybrid ACOR-BP technique. For this purpose a total 3190 data points from Asmari reservoir which have Vs and porosity log data were utilized. These data are divided into two parts, (1) one part included 2090 data points which are used for constructing model and (2) the other part included 1100 data points used for testing and validation model. Hybrid ACOR-BP has better performance in simulating reservoir characterization than NN-BP and ACO individual algorithms. Results of simulation in the test and validation stage calculated root mean squared error, and correlation coefficient 0.06 and 0.97, respectively. Results of this research show Hybrid ACOR-BP algorithm is a reliable intelligent method for estimation of Vs. This study is based on the data collected from the two wells of the Cheshmeh Khush oilfield; moreover, the results of the study can be generalized to other developmental wells.
 

Keywords


 [1]. Moatazedian I., Rahimpour Bonab H., Kadkhodaie-Ilkhchi A., and Rajoli M. R., “Prediction of shear and compressional wave velocities from petrophysical data utilizing genetic algorithms technique: a case study in Hendijan and Abuzar fields located in Persian Gulf,” J. Geopersia, Vol. 1, No. 1, pp. 1- 17, 2011.##
[2]. Lim, J. S., “Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea,” J. Petrol. Sci. Eng., Vol. 49, pp. 182-192, 2005.##
[3]. Eskandari H., Rezaee M., Javaherian M., and Mohammadnia M., “Shear wave velocity estimation utilizing wireline logs for a carbonate reservoir, South-West Iran,” Iranian Int. J. Sci., Vol. 4, pp. 451-464, 2003.##
[4]. Eskandari H., Rezaee M. R. and Mohammadnia M., “Application of multiple regression and artificial neural networks techniques to predict shear wave velocity from well log data for a carbonate reservoir, South-West Iran,” Cseg Recorder, Vol. 29, pp. 42-48, 2004.##
[5]. Rezaee R., Kadkhodaie Ilkhchi A., and Barabadi A., “Prediction of shear wave velocity from petrophysical data utilizing intelligent systems: An example from a sandstone reservoir of Carnarvon Basin, Australia,” J. Petrol. Sci. Eng., Vol. 55, pp. 201-212, 2007.##
[6]. Rajabi M., Bohloli B., and Gholampour Ahangar E., “Intelligent approaches for prediction of compressional, shear and Stoneley wave velocities from conventional well log data: A case study from the Sarvak carbonate reservoir in the Abadan Plain (Southwestern Iran),” Comput. Geosci., Vol. 36, No. 5, pp. 647-664, 2010.##
[7]. Asoodeh M., and Bagheripour P., “Neuro-fuzzy reaping of shear wave velocity correlations derived by hybrid genetic algorithm-pattern search technique,” Cent. Eur. J. Geosci., Vol. 5, No. 2, pp. 272-284, 2013.##
[8]. Akhundi H., Ghafoori M., and Lashkaripour G. R., “Prediction of shear wave velocity using artificial neural network technique, multiple regression and petrophysical data: a case study in Asmari reservoir (SW Iran),” Open J. Geology, Vol. 4, pp. 303-313, 2014.##
[9]. Maleki, S., Moradzadeh, A., Ghavami Riabi, R., Gholami, R., and Sadeghzadeh, F., “Prediction of shear wave ##
velocity using empirical correlations and artificial intelligence methods,” NRIAG J. Astron. & Geophysics, Vol. 3, No.1, pp. 70-81, 2014.##
[10]. Bagheripour, P., Gholami, A., Asoodeh, M., and Vaezzadeh-Asadi, M., “Support vector regression based determination of shear wave velocity,” J. Petrol. Sci. Eng., Vol. 125, pp. 95-99, 2015.##
[11]. Nourafkan, A., and Kadkhodaie-Ilkhchi, A., “Shear wave velocity estimation from conventional well log data using a hybrid ant colony-fuzzy inference system: A case study from Cheshmeh-Khosh oilfield,” J. Petrol. Sci. Eng., Vol. 127, pp. 459-468, 2015.##
[12]. هنرمند، ج.، "بررسی عوامل رسوب شناسی و دیاژنزی کنترل‌کننده خواص مخزنی در سازند آسماری میدان چشمه خوش،" رساله دکتری، دانشگاه تهران، ایران، 1391.##
[13]. Rastegarnia, M., and Kadkhodaie-Ilkhchi, A., “Permeability estimation from the joint use of stoneley wave velocity and support vector machine neural networks: a case study of the Cheshmeh Khush Field, South Iran,” J. Geopersia, Vol. 3, No. 2, pp. 87-97, 2013.##
[14]. Hornik, K., Stinchcombe, M., and White, H., “Multilayer feedforward networks are universal approximators,” Neural Networks, Vol. 2, pp. 359-366, 1989.##
[15]. Kulluk S., “A novel hybrid algorithm combining hunting search with harmony search algorithm for training neural networks,” J. Oper. Res. Soc. Vol. 64, No. 5, pp. 748-761, 2013.##
[16]. Hosseini, Z., and Nakhaei, M., “Estimation of groundwater level using a hybrid genetic algorithm-neural network,” Pollution, Vol. 1, No. 1, pp. 9-21, 2015.##
[17]. Hagan, M., and Menhaj, M., “Training Feedforward Networks with the Marquardt Algorithm,” IEEE T. Neural Networ., Vol. 5, No. 6, pp. 989-993, 1994.##
[18]. Socha, K., “ACO for continuous and mixed-variable optimization,” in M. Dorigo, M., Birattari, C., Blum, L.M., Gambardella, F., Mondada and T., Stutzle (eds), Ant Colony Optimization and Swarm Intelligence, 4th International Workshop, ANTS 2004. 3172 of LNCS: 25–36, 2004.##
[19]. Dorigo, M., Birattari, M., and Stutzle, T., “Ant Colony Optimization: Artificial Ants as a Computational Intelligence Technique,” www.cimat.mx/~jortega/MaterialDidactico/modestoI10/.../ACO1.pdf , 2006.##
[20]. Box, G.E.P., and Muller, M.A., “A note on the generation of random normal deviates. Annals,” Math. Stat., Vol. 29, pp. 610–611, 1958.##
[21]. Marsaglia, G., and Tsang, W.W., “The ziggurat method for generating random variables,” J. Stat. Softw., Vol. 5, No. 8, pp. 1–7, 2000.##
[22]. Socha, K., and Blum, C., “Hybrid ant algorithms applied to feed-forward neural network training: An application to medical pattern classification,” NCA. Vol. 16, No. 3, pp. 235–248, 2007.##
[23]. Socha, K., and Dorigo, M., “Ant colony optimization for continuous domains,” EJOR. Vol. 185, No. 3, pp. 1155–1173, 2008.##
[24]. Ashena, R., and Moghadasi, J., “Bottom hole pressure estimation using evolved neural networks by real coded ant colony optimization and genetic algorithm,” J. Petrol. Sci. Eng., Vol. 77, pp. 375-385, 2011.##
[25]. Tabatabaei S. M. E., Kadkhodaie-Ilkhchi A., Hosseini Z., and Asghari Moghaddam A., “A hybrid stochastic-gradient optimization to estimating total organic carbon from petrophysical data: A case study from the Ahwaz oilfield, SW Iran,” J. Petrol. Sci. Eng., Vol. 127, pp. 35-43, 2015.##
[26]. Larose D. T., “Discovering knowledge in data: an introduction to data mining,” 2nd edition, Jhon Wiley & Sons Inc, 240 p., 2014.##
[27]. عبدی‌زاده، ه.، کدخدائی، ع.، شایسته، م.، "ساخت نگار کل کربن آلی(TOC) از داده‌های چاه‌پیمایی به کمک تکنیک الگوریتم ژنتیک در میدان نفتی اهواز،" پژوهش‌های چینه‌نگاری و رسوب‌شناسی، جلد 28، شماره 4، صفحات 95-110، 1393.##
[28]. Kamali M. R., and Mirshady A. A., “Total organic carbon content determined from well logs using ΔlogR and neuro fuzzy techniques, J. Petrol. Sci. Eng., Vol. 45, pp. 141–148, 2004.##
[29]. Schlumberger “Log interpretation: principles/applications,” Schlumberger Wireline and Testing. 225 Schlumberger Drive, Sugar Land, Texas No. 77478, 1989.##