Kinetic Model of CO2 Conversion to Liquid Fuels by Precipitated Iron Catalyst

Document Type : Research Paper

Authors

1 Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Iran

2 Research and Developed Center, Golriz Company, Toos Industrial Park, Mashhad, Iran

Abstract

In this paper, the mechanism of hydrogenation of carbon dioxide to the heavy hydrocarbons through Fischer-Tropsch synthesis iron catalysts is considered for the development of suitable kinetic model. For this purpose, three kinetic models for carbon dioxide hydrogenation are developed using Langmuir-Hinshelwood-Hougen-Watson (LHHW) method based on basic reactions of Fischer-Tropsch Synthesis and water-gas shift reaction. The kinetic parameters in these models are obtained using empirical results. The results show that the reaction of hydrogenation of carbon dioxide is limited by reaction between surface species of adsorbed carbon monoxide and hydrogen. The results show that the activation energy for hydrocarbon growth in CO2 hydrogenation is higher than Fischer-Tropsch synthesis (100 kJ/mol).
 

Keywords


[1]. Li L., Zhao N., Wei W.and Sun Y., “A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences”, Fuel, Vol. 108, pp.112-130, 2013.##
[2]. Centi G., E. Quadrelli A. and Perathoner S., “Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries”, Energy & Environmental Science, Vol .6, pp.1711-1731, 2013.##
[3]. Dagle R. A., Hu J., Jones S. B., Wilcox W., Frye J. G., White J. F., Jiang J. and Wang Y., “Carbon dioxide conversion to valuable chemical products over composite catalytic systems”, J. Energy Chem., Vol. 22, pp. 368-374, 2013.##
[4]. Saeidi S., N. A., Amin S. and Rahimpour M. R., “Hydrogenation of CO2 to value-added products—A review and potential future developments”, J. CO2 Util. Vol. 5, pp. 66-81, 2014.##
[5]. Chen W. H., “CO2 conversion for syngas production in methane catalytic partial oxidation”, J. CO2 Util., Vol. 5, pp. 1-9, 2014.##
[6]. Ladera R., Pérez-Alonso F. J., González-Carballo J. M., Ojeda M., Rojas S. and Fierro J. L. G., “Catalytic valorization of CO2 via methanol synthesis with Ga-promoted Cu–ZnO–ZrO2 catalysts”, Appl. Catal. B: Envir., Vol .-142–143, pp. 241-248, 2013.##
[7] Ma J., Sun N., Zhang X., Zhao N., Xiao F., Wei W. and Sun Y., “A short review of catalysis for CO2 conversion”, Catal. Today, Vol. 148, pp. 221-231, 2009.##
[8] Ding F., Zhang A., Liu M., Zuo Y., Li K., Guo X. and Song C., “CO2 hydrogenation to hydrocarbons over iron-based catalyst: effects of physicochemical properties of Al2O3 supports”, Ind. Eng. Chem. Res., Vol. 53, pp. 17563-17569, 2014.##
[9]. Nakhaei Pour A., Housaindokht M. and Torabi F., “Water–gas shift kinetics over ianthanum-promoted iron catalyst in Fischer–Tropsch synthesis: thermodynamic analysis of nanoparticle size effect”, J. Iran Chem. Soc., Vol. 11, pp 1639–1648, 2014.##
[10]. Nakhaei Pour A. and Housaindokht M. R., “The olefin to paraffin ratio as a function of catalyst particle size in Fischer–Tropsch synthesis by iron catalyst” J. Nat. Gas Sci. Eng., Vol. 14, pp. 204-210, 2013.##
[11]. Dorner R. W., Hardy D. R., Williams F. W. and Willauer H. D., “C2-C5+ olefin production from CO2 hydrogenation using ceria modified Fe/Mn/K catalysts”, Catal. Comm., Vol. 15, pp. 88-92, 2011.##
[12] Büchel R., Baiker A. and Pratsinis S. E., “Effect of Ba and K addition and controlled spatial deposition of Rh in Rh/Al2O3 catalysts for CO2 hydrogenation”, Appl. Catal. A, Vol. 477, pp. 93-101, 2014.##
[13]. Nakhaei Pour A. and Housaindokht M., “Fischer–Tropsch synthesis over CNT supported Cobalt Catalysts: role of metal Nanoparticle size on catalyst activity and products selectivity”, Catal. Lett, Vol. 143, p. 1328, 2013.##
[14]. Van Der Laan G. P. and Beenackers A. A. C. M., “Kinetics and selectivity of the Fischer–Tropsch synthesis: a literature review”, Catal. Rev., Vol. 41, pp. 255-318, 1999.##
[15]. Riedel T., Schaub G., Jun K.-W. and Lee K.-W., “Kinetics of CO2 Hydrogenation on a K-promoted Fe Catalyst”, Ind. Eng. Chem. Res., Vol. 40, pp. 1355-1363, 2001.##
[16]. Willauer H. D., Ananth R., Olsen M. T., Drab D. M., Hardy D. R. and Williams F. W., “Modeling and kinetic analysis of CO2 hydrogenation using a Mn and K-promoted Fe catalyst in a fixed-bed reactor”, J. CO2 Util., Vol. 3–4, pp. 56-64, 2013.##
[17]. Nakhaei Pour A., Housaindokht M. and Monhemi H., “Effect of solvent surface tension on the radius of hematite nanoparticles”, Colloid J., Vol. 76, pp. 782-787, 2014.##
[18]. Nakhaei Pour A., Khodabandeh H., Izadyar M. and Housaindokht M., “Detailed kinetics of Fischer–Tropsch synthesis on a precipitated iron catalyst”, Reac. Kinet. Mech. Cat., Vol. 111, pp. 29-44, 2014.##
[19]. Nakhaei Pour A., Riyahi F., Housaindokht M. R., Irani M., Shahri S. M. K. and Hatami B., “Hydrocarbon production rates in Fischer-Tropsch synthesis over a Fe/Cu/La/Si catalyst”, J. Energy Chem., Vol. 22, pp. 119-129, 2013.##
[20]. Nakhaei Pour A., Housaindokht M. R., Zarkesh J., Irani M. and Babakhani E. G., “Kinetics study of CO hydrogenation on a precipitated iron catalyst”, J. Ind. Eng. Chem., Vol. 18, pp. 597-603, 2012.##
[21]. Nakhaei Pour A., Housaindokht M. R., Irani M. and Kamali Shahri S. M., “Size-dependent studies of Fischer–Tropsch synthesis on iron based catalyst: New kinetic model”,  Fuel, Vol. 116 , pp.787-793, 2014.##
[22]. Dry M., “Fischer-Tropsch synthesis over iron catalysts”, Catal. Lett. , Vol. 7, pp. 241-251, 1990.##
[23] Martinelli M., Visconti C. G., Lietti L., Forzatti P., Bassano C. and Deiana P., “CO2 reactivity on Fe–Zn–Cu–K Fischer–Tropsch synthesis catalysts with different K-loadings”, Catal. Today, Vol. 228, pp. 77-88, 2014.##
[24]. Lu X., Hildebrandt D., Liu X. and Glasser D., “A Thermodynamic Approach to Olefin Product Distribution in Fischer–Tropsch Synthesis”, Ind. Eng. Chem. Res., Vol. 51, pp. 16544-16551, 2012.##
[25]. Ratnasamy C. and Wagner J. P., “Water gas shift Catalysis”, Catal. Rev., Vol. 51, pp.325-440, 2009.##
[26]. Reddy G. K. and Smirniotis P. G., in: Smirniotis G. K. R. G. (Ed.), “Water gas shift reaction”, Elsevier, Amsterdam, pp. 225-261, 2015.##
[27]. Krishnamoorthy S. and Li A., Iglesia E., “Pathways for CO2 Formation and Conversion During Fischer–Tropsch Synthesis on Iron-Based Catalysts”, Catal. Lett., Vol. 80, pp. 77-86, 2002.##
[28]. Nakhaei Pour A., Housaindokht M. R., Zarkesh J. and Tayyari S. F., “Studies of carbonaceous species in alkali promoted iron catalysts during Fischer–Tropsch synthesis”, J. Ind. Eng. Chem., Vol. 16, pp. 1025-1032, 2010.##
[29]. Herranz T., Rojas S., Pérez-Alonso F. J., Ojeda M., Terreros P. and Fierro J. L. G., “Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas”, J. Catal., Vol. 243, pp. 199-211, 2006.##
[30]. Steynberg A. P., Dry M. E., Davis B. H., Breman B. B., in: André S. and Mark D. (Eds.), “Studies in Surface science and catalysis”, Elsevier, pp. 64-195, 2004.##
[31] Dry M. E., Shingles T., Boshoff L. J., van C. S. and Botha H., “Factors influencing the formation of carbon on iron Fischer-Tropsch catalysts: II. The effect of temperature and of gases and vapors present during Fischer-Tropsch synthesis”, J. Catal., Vol. 17, pp. 347-354, 1970.##
[32]. van der Laan G. P. and Beenackers A. A. C. M., “Intrinsic kinetics of the gas–solid Fischer–Tropsch and water gas shift reactions over a precipitated iron catalyst”, Appl. Catal. A., Vol. 193, pp. 39-53, 2000.##
[33]. Davis B. H., “Fischer–Tropsch synthesis: reaction mechanisms for iron catalysts”, Catal. Today, Vol. 141, pp. 25-33, 2009.##
[34]. Dry M. E., Shingles T., Boshoff L. J. and Oosthuizen G. J., “Heats of chemisorption on promoted iron surfaces and the role of alkali in Fischer-Tropsch synthesis”, J. Catal., Vol. 15, pp. 190-199, 1969.##
[35]. An X., Wu B.-s., Wan H.-J., Li T.-Z., Tao Z.-C., Xiang H.-W. and Li Y.-W., “Comparative study of iron-based Fischer–Tropsch synthesis catalyst promoted with potassium or sodium”, Catal. Comm., Vol. 8, pp. 1957-1962, 2007.##
[36]. Li S., Li A., Krishnamoorthy S. and Iglesia E., “Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and Catalytic behavior of Iron-based Fischer–Tropsch synthesis catalysts”, Catal. Lett., Vol. 77, pp. 197-205, 2001.##
[37]. Gaube J. and Klein H. F., “The promoter effect of alkali in Fischer-Tropsch iron and cobalt catalysts”, Appl. Catal. A, Vol. 350, pp. 126-132, 2008.##
[38]. Teng B.-T., Chang J., Zhang C.-H., Cao D.-B., Yang J., Liu Y., Guo X.-H., Xiang H.-W. and Li Y.-W., “A comprehensive kinetics model of Fischer–Tropsch synthesis over an industrial Fe–Mn catalyst”, Appl. Catal. A, Vol. 301, pp.39-50, 2006.##
[39]. Yang J., Liu Y., Chang J., Wang Y.-N., Bai L., Xu Y.-Y., Xiang H.-W., Li Y.-W. and Zhong B., “Detailed Kinetics of Fischer−Tropsch Synthesis on an industrial Fe−Mn Catalyst”, Ind. Eng. Chem. Res., Vol. 42, pp. 5066-5090, 2003.##
[40]. Wang Y.-N., Ma W.-P., Lu Y.-J., Yang J., Xu Y.-Y., Xiang H.-W., Li Y.-W., Zhao Y.-L. and Zhang B.-J., “Kinetics modelling of Fischer–Tropsch synthesis over an industrial Fe–Cu–K catalyst”, Fuel, Vol. 82, pp. 195-213, 2003.##