Synthesis, Characterization, and Catalytic Performance of Fe-Cr Nano Oxide/ZSM-5 Composites for Styrene Production

Document Type : Research Paper

Authors

1 Chemical Engineering Department, Urmia University of Technology, Iran

2 Inorganic Chemistry Department, Faculty of Chemistry, University of Tabriz, Iran

Abstract

In this article, at first ZSM-5 zeolite using metakaolin as a source of alumina was synthesized by using a microwave oven. In this regard, ZSM-5 zeolites with high purity and in relatively short time (25 min with microwave irradiation) were successfully prepared. Then nano particle Fe-Cr/ZSM-5 zeolite composite catalysts were prepared via Solid State Dispersion (SSD) and encapsulation methods. Samples were prepared by mixing different weight ratios of Fe2O3, Cr2O3, and K2CO3 powders with ZSM-5 zeolites at the first method, and for the second one, the metal complexes were encapsulated within the ZSM-5 zeolite pores. Prepared catalysts then characterized via EDX, SEM, XRD and FT-IR techniques. The catalytic performance of the synthesized catalysts was evaluated in ethylbenzene dehydrogenation to styrene in the presence of steam at 610 °C under atmospheric pressure. The results demonstrate that ZSM-5 oxide loaded catalysts have better performance than bare zeolite. And also samples with Fe2O3 nano particles act more effectively than Cr2O3 loaded zeolites. It was shown that styrene yield was significantly been influenced by loading Fe2O3, Cr2O3 and K2CO3 materials. The comparison between performance of SSD and encapsulation method was shown that the second one with smaller particle size and high Fe-Cr oxide dispersion has higher yield and conversion toward styrene production.
 

Keywords

Main Subjects


[1]. Liu W., Addiego W. P. and Sorensen C. M., “Monolith reactor for the dehydrogenation of ethylbenzene to styrene,” Ind. Eng. Chem., Vol. 41, pp. 3131–3138, 2002. ##
[2]. Meima G. R. and Menon P. G., “Catalyst deactivation phenomena in styrene production,” Appl.Catal B., Vol. 212, pp. 239-245, 2001. ##
[3]. Serafin I., Kotarba A. and Grzywa M, “Quenching of potassium loss from styrene catalyst: Effect of Cr doping on stabilization of the K2Fe22O34 active phase,” Journal of Catalysis., Vol. 239, pp. 137–144, 2006. ##
[4]. Rossetti I., Bencini E., Trentini L. and Forni L., “Study of the deactivation of a commercial catalyst for ethylbenzene dehydrogenation to styrene,” Appl. Catal. A., Vol. 292, pp. 118-123, 2005. ##
[5]. Kus´trowski P., Chmielarz L., Surman J., Bidzin´ Ska E., Dziembaj R., Cool P. and Vansant E. F., “Catalytic activity of MCM-48-, SBA-15-, MCF-, and MSU-Type mesoporous silicas modified with Fe3+ Species in the Oxidative Dehydrogenation of Ethylbenzene in the Presence of N2O,” J. Phys. Chem. A., Vol. 109, pp. 9808-9815, 2005. ##
[6]. Dittmeyer R., Hollien V. and Quicker P. “Factors controlling the performance of catalytic dehydrogenation o ethylbenzene in palladium composite membrane reactors,” Chemical Engineering Science., Vol. 54, pp. 1431-1439, 1999. ##
[7]. Kong C., Lu J., Yang J. and Wang J., “Catalytic dehydrogenation of ethylbenzene to styrenein in a zeolite silicalite-1 membrane reactor,” Journal of Membrane Science., Vol. 306, pp. 29-35, 2007. ##
[8]. Dulamita N., Maicaneanu A., Sayle D. C., Stanca M., Craciun R., Olea M., Afloroaei C. and Fodor A., “Ethylbenzene dehydrogenation on Fe2O3-Cr2O3-K2CO3 catalysts promoted with transitional metal oxides,” Appl. Catal. A., Vol. 287, pp. 9 –18, 2005. ##
[9]. Liu Z. W., Wang C., Fan W. B., Liu Z. T., Hao Q. Q., Long X., Lu J., Wang J. G., Qin Z. F., Su D. S., “V2O5/Ce0.6Zr0.4O2-Al2O3 as an efficient catalyst for the oxidative dehydrogenation of ethylbenzene with carbon dioxide,” |https://doi.org/10.1002/cssc.201000351, Vol. 4, pp. 341–345, 2011. ##
[10]. Reddy B. M., Rao K. N., Reddy G. K., Khan A., Park S. E., “Structural Characterization and Oxidehydrogenation Activity of CeO2/Al2O3 and V2O5/CeO2/Al2O3 Catalysts,” J. Phys. Chem. C., Vol. 111, pp. 18751–18758, 2007. ##
[11]. Culp R. D. and Newman R. D., “Methods for designing and operating a dehydrogenation process system that uses a high stability dehydrogenation catalyst,” US Patent 0106269A1, 2006. ##
[12]. Burri A., Jiang N., Yahyaoui Kh. and Park S. E., “Ethylbenzene to styrene over alkali doped TiO2-ZrO2with CO2 as softoxidant,” Applied Catalysis A: General, Vol. 495, pp. 192–199, 2015. ##
[13]. Cavani F. and Trifiro F., “Alternative processes for the production of styrene,” Appl. Catal. A., Vol. 133, pp.  219-239, 1995.
[14]. Ikenga N. O., Tsuruda T., Senma K., Yamaguchi T., Sakurai Y. and Suzuki T., “Dehydrogenation of ethylbenzene with carbon dioxide using activated carbon-supported catalysts,” Ind. Eng. Chem. Res., Vol. 39, pp. 1228-1234, 2000. ##
[15]. چرچی ن.، توکلی ا.، بابالو ع. ا.، اجتماعی م.، بیاتی ب. و بیات ی.، "مطالعه اثر پارامترهای عملیاتی در فرآیند هیدروایزومریزاسیون نرما ل پنتان در حضور نانوکاتالیست Pt/ZSM-5،" پژوهش نفت، دوره 25، شماره 84، صفحات 11- 4، 1394. ##
[16]. Khatamian M., Khandar A. A., Haghighi M., Ghadiri M. and Darbandi M., “Synthesis, characterization and acidic properties of nanopowder ZSM-5 type ferrisilicates in the Na+/K+ alkali system, Powder Technol,” Vol. 203, p. 503, 2010. ##
[17]. Cundy C. S. and Cox P. A., “The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism,” Micropor. Mesopor. Mater., Vol. 82, pp. 1-78, 2005. ##
[18]. Logar N. Z. and Kaučič V., Nanoporous Materials: From. “Catalysis and Hydrogen Storage to Wastewater Treatment,” Acta Chim. Slov., Vol. 53, pp. 117-135, 2006. ##
[19]. Qiu L. G., Xie A. G., and Zhang L. D., “Encapsulation of Catalysts in Supramolecular Porous Frameworks : Size-and Shape-Selective Catalytic Oxidation of Phenols,” Adv. Mater., Vol. 17, pp. 689-692, 2005. ##
[20]. Varkey, S. P., Ratnasamy, P. R., “Zeolite-encapsulated manganese III (salen complexes), Journal of Molecular Catalysis,” Vol. 135, pp.  295–306, 2006. ##
[21]. Maity, S., Rana, M., Srinivas, B., Bej, S., Dhar, G.M. and Rao, T.P. “Characterization and Evaluation of ZrO2 Supported Hydrotreating Catalyst,” Journal of Molecular Catalysis A: Chemical., Vol. 153, pp. 121-127, 2000. ##
[22] Khatamian M., Khandar A. A., Haghighi M. and Ghadiri M., “Nano ZSM-5 type ferrisilicates as novel catalysts for ethylbenzene dehydrogenation in the presence of N2O Applied Surface Science,” Vol. 258, pp. 865– 872, 2011. ##
[23]. Ebrahim Sadeghi, Maryam Saket Oskoui, Maasoume Khatamian, Abdolhossein H. Ghassemi, “Oxidative Dehydrogenation of Ethylbenzene over ZSM-5 Type Chromosilicates in the Presence of CO2, Modern Research in Catalysis., Vol. 5, pp.  75-84, 2016. ##
[24]. Baerlocher, Ch., Meier, W.M., Olson, D.H. “Atlas of zeolite framework types,” ELSEVIER, Amsterdam, p.138, 2001. ##
[25]. Ghamami, M., and Angeving, Ph. “Mechanistic study of organic template removel from ZSM-5 Precursors,” Microporous and Mesoporous Materials. Vol. 70, pp. 27-35, 2004. ##
[26]. Cejka, J., Bekkum, H.V., Corma, A. and Schuth, F. “Introduction to zeolite science and practice,” Elsevier, 2007. ##
[27]. Mohamed, R.M., Fouad, O.A., Ismail, A.A. “Influence of crystallization time on the Synthesis of nanosized ZSM-5,” Materials Letters. Vol. 59, pp. 3441-3444, 2005. ##
[28]. Cheng, Y., Wang, L.J., Li, J.S. “Preparation and characterization of nanosized ZSM-5 zeolites in theabsence of organic template,” Materials Letters. Vol. 59, pp.  3427-3430, 2005. ##
[29]. Surgino, M., Shimada, H., Turuda, T., Miura, H., Ikenaga, N. and Suzuki, T. “Oxidative dehydrogenation of ethylbenzene with carbon dioxide,” Appl. Catal. A., Vol. 121, pp. 125–137, 1995. ##