Ground Roll and Random Noise Attenuation Using Common Offset Common Reflection Surface Stacking

Document Type : Research Paper

Authors

1 Department of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran

2 Department of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran\ Institute of Geophysics, University of Tehran, Iran

3 Exploration and Production Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran

4 Department of Mining, Petroleum and Geophysics, Shahrood University of Technology, Iran

5 Department of Geophysics, Exploration Directorate of National Iranian Oil Company, Iran

Abstract

Seismic noise can be divided to random and coherent in reflection survey. The ground roll is a coherent noise in land seismic data that has high energy, high amplitude, low frequency and low velocity. It usually masks the reflections. Therefore, it must be attenuated in the seismic data processing. In this paper, we proposed a modification on the common offset common reflection surface method to attenuate ground roll and random noise. The CO CRS stacking operator is a hyperbola; therefore, it fits the hyperbolic reflections in the prestack data. Ground roll and random noise has linear and uncorrelated traveltime respectively. When the CO CRS operator is applied to the data, the reflection events can be detected by the coherency analyses. High coherency values belong to the reflection events, and low values indicate that no events with hyperbolic traveltime are detected. As a result, when the events are distinguished, any event with non-hyperbolic traveltime can be muted. We applied the proposed method on two real land data sets. The new method was compared with the f-k filtering and conventional CO CRS stacking after the f-k filtering. Results showed that the proposed method attenuated aliased ground roll better than the f-k filtering and conventional CRS. Further investigation was the effect of reflection amplitudes on ground roll attenuation by the CO CRS stacking. For a better attenuation, the minimum coherency of reflections had to be higher than the maximum coherency of the ground roll. Therefore, the intersection of the minimum reflections coherency and the maximum ground roll coherency is an SNR threshold (dB) for ground roll attenuation with FO CRS stacking.

Keywords

Main Subjects


[1]. Krohn C., Ronen S., Deere J. and Gulunay N., “Introduction to this special section—Seismic noise,” The Leading Edge, pp. 163-165, 2008.##
[2]. Halliday D. F., Curtis A., Vermeer P., Strobbia C., Glushchenko A., Manen D. and Robertsson J., “Interferometric ground-roll removal: Attenuation of scattered surface waves in single-sensor data, Geophysics, Vol. 75, No. 2, pp. SA15-SA25, 2010.##
[3]. Fa›al Rastegar S. A., Javaherian A., Keshavarz Farajkhah N., Soleimani Monfared M. and Zarei A., “Ground-roll attenuation using modified common offset–common-reflection-surface stacking, Applied Geophysics, Vol. 13, No. 2, pp. 353-363, 2016.##
[4]. Hamidi R., Javaherian A. and Reza A. M., “Eigenimage wavelet transform for ground roll attenuation; a case study on an Iranian oilfield, Journal of Seismic Exploration, Vol. 22, No. 1, pp. 251-270, 2013.##
[5]. Boustani B., Torabi S., Javaherian  A. and Mortazavi S. A., “Ground roll attenuation using a curvelet-SVD filter: a case study from the west of Iran, Journal of Geophysics and Engineering, Vol. 10, No. 055006, pp. 1-10, 2013.##
[6]. Hosseini S. A., Javaherian A., Hassani H., Torabi S., and Sadri M., “Adaptive attenuation of aliased ground roll using the shearlet transform,” Journal of Applied Geophysics, Vol. 112, pp. 190–205, 2015.##
[7]. Chen Y. and Ma J., “Random noise attenuation by f-x empirical-mode decomposition predictive filtering,” Geophysics, Vol. 79, No. 3, pp. V81-V91, 2014.##
[8]. Bekara M. and van der Baan M., “Random and coherent noise attenuation by empirical mode decomposition,” Geophysics, Vol. 74, No. 5, pp. V89-V98, 2009.##
[9]. Hashemi H., Javaherian A. and Babuska R., “A semi-supervised method to detect seismic random noise with fuzzy GK clustering,” Journal of Geophysics and Engineering,Vol 5, No 4, p. 457, 2008.##
[10]. Lari H. H. and Gholami A., “Curvelet-TV regularized Bregman iteration for seismic random noise attenuation,” Journal of Applied Geophysics, Vol. 109, p. 233, 2014.##
[11]. گودرزی ع.، "کاربرد روش برانبارش سطح مشترک در پردازش داده‌های لرزه‌ای بازتابی دوبعدی،" پایان‌نامه کارشناسی ارشد، دانشگاه تهران، ایران، 1388.##
[12]. Zhang Y., Bergler S. and Hubral P., “Common-reflection-surface (CRS) stack for common offset,” Geophysical Prospecting, Vol. 49, pp. 709-718, 2001.##
[13]. Mann J. and Höcht G., “Pulse stretch effects in the context of data-driven imaging methods,” 65th EAGE Conference & Technical Exhibition, Extended Abstracts, Stavanger, Norway, Session, p. 007, 2003.##
[14]. Eisenberg Klein G., Pruessmann J., Gierse G. and Trappe H., “Noise reduction in 2D and 3D seismic imaging by the CRS method,” The Leading Edge, pp. 258-265, 2008.##
[15]. Baykulov M., Dummong S. and Gajewski D., “From time to depth with CRS attributes,” Geophysics,Vol. 76 No 4, Spp151–S155, 2011.##
[16]. Bergler S., “On the determination and use of kinematic wavefield attributes for 3D seismic imaging”, Logos Verlag, Berlin, 2004.##
[17]. Bergler S., “The Common reflection surface stack for common offset: theory and application,” Ph.D. Thesis, University of Karlsruhe, Germany, 2001.##
[18]. Faal Rastegar S. A., Javaherian A., Keshavarz Farajkhah N., Soleimani Monfared M. and Zarei A., “Effective parameters in ground roll attenuation using FO CRS stacking,” Journal of Applied Geophysics, Vol. 135, pp. 249-260, 2016.##
[19]. U. S. G. S., United States Geological Survey,  “http://energy.usgs.gov/GeochemistryGeophysics/SeismicDataProcessingInterpretation/NPRASeismicDataArchive.aspx,” 2016.##
[20]. فعال رستگار س. ع.، "تضعیف نوفه‌های همدوس خطی و اتفاقی به روش سطح بازتاب مشترک دورافت مشترک،" رساله دکتری، دانشگاه صنعتی امیرکبیر، ایران، 1395.##