Making AZADEGAN Oil Field, Smart: Data Model, Weighted KPIs and Management Dashboard

Document Type : Research Paper

Authors

1 Department of IT Management, Faculty of Management & Economics, Tarbiat Modares University, Tehran, Iran

2 nstitute of Petroleum Engineering, University of Tehran, Iran

3 Institute of Petroleum Engineering, University of Tehran, Iran

Abstract

Intelligent oilfield technology is one of the newest technologies in the oil/gas industry, which is increasingly regarded by international oil companies as a highly competitive advantage in production. The intelligent oilfield has various dimensions and components such as human resources, processes and equipment, but the cornerstone of intelligent oilfield is the effective use and management of field’s big data in order to make strategic and timely decisions on production. In order to achieve the goal of optimal management and utilization of oilfield’s data, in this study, by using PPDM standard and Azadegan oilfield as a case study, the oilfield’s data model is designed in seven specialized subject areas, 70 tables and 2700 columns. Then, the field’s data warehouse model is developed based on Kimball’s methodology. In the next step, both data and data warehouse models were validated by experts. Consequently, in order to facilitate strategic and timely decisions on production, based on the designed data and data warehouse models in the previous stage, about 40 “key performance indicators” were obtained and validated by the experts of oil and gas industry in three intervals of short, medium and long term, and the importance of each in the decision-making about the field’s production was determined. The “equipment type”, “gas to oil ratio” and “real production amount” indicators were evaluated with the highest weight and therefore the highest importance in the field’s strategic decisions. At the end, in order to facilitate the production of real- time managerial reports about oilfield’s production, the Azadegan oilfield’s management dashboard is designed and presented.

Keywords


[1]. Carvajal G., Maucec M. and Cullick S., “Intelligent digital oil and gas fields concepts, collaboration, and right-time decisions,” Elsevier Inc., 2018.##
[2]. Steinhubl A., Klimchuk G., Click Ch. and Morawski P., “Unleashing productivity: the digital oil field advantage,” Booz & Co, manual or booklet, pp. 1-19, 2008. ##
[3]. Saputelli L., Bravo C., Nikolaou M., Lopez C., Cramer R., Mochizuki S. and Moricca G., “Best practices and lessons learned after 10 years of digital oilfield (dof) implementations,” SPE Kuwait Oil and Gas Show and opment of the digital oilfield,” SPE Intelligent Energy International, 27-29 March, Utrecht, The Netherlands, 2012.##
[21]. Al-Jasmi A., Goel H. K., Cerda S. S., Berry K. and Velasquez G., “Intelligent digital oilfield implementation: a case study of change management strategies to ensure success,” SPE Middle East Intelligent Energy Conference and Exhibition, 28-30 October, Manama, Bahrain, 2013.##
[22]. Saputelli L. A., Bravo C., Moricca G., Cramer R., Nikolaou M., Lopez C. and Mochizuki S., “Best practicesand lessons learned after 10 years of digital oilfield (DOF) implementations,” SPE Kuwait Oill and Gas Show and Conference, October 8-10, Kuwait City, Kuwait, 2013.##
[23]. Feineman D. R., “Assessing the maturity of digital oilfield developments,” SPE Intelligent Energy Conference & Exhibition, April 1-3, Utrecht, The Netherlands, 2014. ##
[24]. Crompton J., “Big data and the internet of things meet the oil & amp; gas industry,” PNEC.19th International Conference on Petroleum Integration, Information and Data Management. Houston, TX. 2015. ##
[25]. Crompton J., “The digital oil field hype curve:  current ssessment of the oil and gas industry's digital oil field program,” SPE Digital Energy Conference. Woodlands, TX. 2015. ##
[26].    بهروز ت. و هندی ص.، "طراحی و ساخت اولین چاه هوشمند خاورمیانه و برنامه‌نویسی نرم‌افزار بررسی خواص نفت در آن"، پژوهش نفت، شماره 73، تهران، 1392.##
[27].    میرحسنی ع. حسن آبادی م.، مطهری س. م. و عسگری ا. ع. ، "بهینه‌سازی تولید نفت در چاه‌های هوشمند با روش طرح آزمایش‌ها"، پژوهش نفت، شماره 71، تهران، 1391.##
ف28 د  بهروز ت.، "بهینه‌سازی تعداد، مکان و عملکرد شیرهای کنترلی در چاه‌های هوشمند"، پایان‌نامه دکتری مهندسی نفت پایان‌نامه دکتری، انستیتو مهندسی نفت، دانشکده فنی دانشگاه تهران، 1394.##
[29].    بهروز ت. و هندی ص.، "مؤلفه‌های تکنولوژی میدان هوشمند تاریخچه و الگوریتم عملکرد"، اکتشاف و تولید، شماره 55، تهران، 1387.##
[30]. Behrouz T., Rasaei M. R. and Masoudi R., “Effective workflow for pptimization of intelligent well completions,” Iranian Journal of Science and Technology, Article 11, Vol. 38, Issue 4, Autumn, pp. 481-487, 2014.##
[31]. Behrouz T., Rasaei M. R. and Masoudi R., “A novel integrated approach to oil production optimization and limiting the water cut using intelligent well concept: using case studies,” Iranian Journal of Oil & Gas, Article 3, Vol. 5, Issue 1, Winter 2016, pp. 27-41, 2016.##
[32]. معاونت پژوهش‌های زیربنایی و امور تولیدی دفتر: مطالعات انرژی، صنعت و معدن، چاه و میدان هوشمند و کاربردهای آن در صنعت نفت ایران، کد موضوعی: 310، شماره مسلسل: 15111، 1395.##
[33]. رانکوهی م. "مفاهیم بنیادی پایگاه داده‌ها"،‌ انتشارات جلوه، چاپ سوم، تهران، 1392.##
[34]. Professional Petroleum Data Management Association (PPDM), Available from: www.ppdm.org [Accessed 12 May 2018].##
[35]. Inmon W., “Exploration warehousing,” turning business information into business opportunity, 1st ed., John Wiley and Sons, 2000.##
[36]. Kimball R., “The data Warehouse lifecycle toolkit,” 2nd ed., John Wiley & Sons, 2008. ##
[37]. Hay D. C., “Requirements analysis: dealing with data,” Prentice Hall, 2003. ##
[38]. Smith J., “Describe long-term, medium-term and short-term goals,” https://bizfluent.com/info-8342572-describe-longterm-mediumterm-shortterm-goals. html, 21.7.2018.##