Destruction of Kerosene in Water with the Zirconium Oxide Nanocatalyst

Document Type : Research Paper

Author

Department of Basic Sciences, Petroleum University of Technology, Ahvaz, Iran

Abstract

Due to the high toxicity of kerosene composition in humans and living organisms, in this project; the degradation of kerosene in water in the presence of nano zirconium oxide was investigated in different conditions. Moreover, the kerosene used in this research has aliphatic compounds whose number of carbons is between 6-22. Hydrocarbons in this sample were identified using the gas chromatography method and compared with ASTMD2163 test results. The degradation of kerosene in the presence of nano zirconium oxide was investigated using gas chromatography, a viscometer, a density meter, and a pH meter. In this project, data related to kinematic viscosity and dynamic viscosity were measured. The pH changes measured in the water show that the degradation of kerosene produces carbon dioxide gas because the pH is <7. Ultimately, in this study, the amount of changes in hydrocarbon fractions was investigated by gas chromatography method. Also, based on the obtained results, a mechanism for the degradation of kerosene, which can be carried out through the production of hydroxy radical, was reported.

Keywords

Main Subjects


[1]. Ritchie, G.D., Still, K. R., Alexander, W. K., Nordholm, A. F., Wilson, C. L., Rossi, J. 3rd., Mattie, D. R. (2001). A review of the neurotoxicity risk of selected hydrocarbon fuels. J. Toxicol. Environ. Health. B Crit. Rev. 4, 223-312.##
[2]. Hassanzadeh, S., Bagherzadeh, H., Jahangiri, M., Shahrabadi, A. (2017) Experimental investigation of various co-solvents and an environment-friendly solvent efficiencies to minimize aromatic solvents consumption during asphaltene removal, J. Pet. Res. 26, 128-137. ##
[3]. Orain, M., Baranger, P., Ledier, C., Apeloig, J., Grisch, F. (2014). Fluorescence spectroscopy of kerosene vapour at high temperatures and pressures: potential for gas turbines measurements. Appl. Phys. B. 116, 729–745. ##
[4]. Koide, S., Komatsu, Y., Shibuya, M., (2004). Kerosene composition, patent, Publication of WO2004050804A1. ##
[5]. Soltani, M., Ghasemi, S., & Kamrani, E. (2023). The evaluation on pollution state of total petroleum hydrocarbons in the surrounding sediments of coral ecosystems (Case study: Shivdar International Wetland). Journal of Petroleum Research, 33(1402-2), 59-72. ##
[6]. Kumar, S., Kavitha, T.K., Angurana, S. K. (2019). Kerosene, Camphor, and Naphthalene Poisoning in Children. Indian. J. Crit. Care Med. 23, S278-S281. ##
[7]. Slima, S. R., Ragab, E., Abdalgeleel. S.A. (2021) Evaluation of cases of kerosene poisoning: A 3-year prospective study at Menoufia University Hospitals. Ain. Shams. J. Forensic Med. Clin. Toxicol. 37, 34-42. ##
[8]. Maheshwari, A., Gulati, S. (2018). Kerosene poisoning, India. J. Med. Specialities, In press. ##
[9]. Bruno, T. J., Huber, M. L., Laesecke, A., Lemmon, E. W., Perkins, R. A. (2006). Thermochemical and thermophysical properties of JP-10, NISTIR 6640. National Institute of Standards and Technology, Boulder, CO. ##
[10]. Magee, J. W., Bruno, T. J., Friend, D. G., Huber, M. L., Laesecke, A., Lemmon, E. W., McLinden, M. O., Perkins, R. A., Baranski, J., Widegren, J. A. (2007). Thermophysical properties measurements and models for rocket propellant RP-1: Phase I, NISTIR 6646. National Institute of Standards and Technology, Boulder, CO. ##
[11]. Huber, M. L., Lemmon, E., Ott, L. S., Bruno, T. J. (2009) Preliminary surrogate mixture models for rocket propellants RP-1 and RP-2. Energy Fuels. 23, 3083–3088. ##
[12]. Smith, B. L., Bruno, T. J. (2008) Application of a composition-explicit distillation curve metrology to mixtures of Jet-A þ synthetic Fischer-Tropsch S-8. J. Propul. Power. 24, 619–623. ##
[13]. Kogler, M., Kock, E-M., Bielz, T., Pfaller, K., Klotzer, B., Schmidmair, D., Perfler, L., Penner, S. (2014). Hydrogen surface reactions and adsorption studied on Y2O3, YSZ, and ZrO2. J. Phys. Chem. C. 118, 8435–8444. ##
[14]. Jafar, M., Moradi, M. G., Heydarinasab, A., Rashidi, A. (2023) Investigation of the Performance and Stability of Ni-Co/Al2O3-ZrO2 Nanocatalysts with Micro Channel Reactor in Dry Reforming of Methane. J. Pet. Res. 32, 108-125. ##
[15]. Cao, L.X., Gao, Z., Suib, S.L., Obee, T.N., Hay, S.O., Freihaut, J.D. (2000). J. Catal. 196, 253–261. ##
[16]. Troy, M. T., Dean, T. T., Marc, A. A., Thatcher, W. R. (2006) Photocatalytic oxidation of low molecular weight alkanes: Observations with ZrO2–TiO2 supported thin films, Appl. Catal. B: Environ. 64, 153–160##
[17]. Iglesia, E., Soled, S.L., Kramer, G. M. (1993). Isomerization of Alkanes on Sulfated Zirconia: Promotion by Pt and by Adamantyl Hydride Transfer Species, J. Catal. 144, 238-253. ##
[18]. Watanabe, M., Inomata, H., Smith Jr, R. L., Arai, K. (2001). Catalytic decarboxylation of acetic acid with zirconia catalyst in supercritical water, Appl. Catal. A: General. 219, 149–156##
[19]. Khan, S.R., Kumar Nirmal, J.I., Kumar, R. N., Patel, J. G. (2015) Biodegradation of kerosene: Study of growth optimization and metabolic fate of P. janthinellum SDX7. Braz. J. Microbiol. 46, 397-406. ##