Construction of a Mechanical Earth Model to Determine a Safe Mud Window in one of the Southwestern Oilfields of Iran

Document Type : Research Paper

Authors

1 Department of Chemical and Petroleum Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Mining Engineering, Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

In contemporary oil and gas industry projects, there is a notable prevalence of technical and economic obstacles. As a result, mitigating non-productive time (NPT) is imperative in preventing loss, kicks, and instability. The precision of pore pressure and fracture pressure forecasts is pivotal in ascertaining the normal compaction trend. This research has introduced a mud window model based on the geomechanical attributes of a prominent oilfield in the southwestern region of Iran at a depth of 4000 to 4309 meters (Fahliyan Formation). The Earth model was formulated utilizing Geolog v.19 software. In addition, the initial phase encompassed the determination of the Normal Compaction Trend, followed by a comparative evaluation and selection of the optimal function. Moreover, pore pressure values were established using the Eaton method and correlated with data collected from the oilfield and its vicinity. Furthermore, establishing the optimal correlation among sonic velocity, density, and resistivity logs is essential to initiate the mud window. Also, the fracture pressure prediction was conducted using the Breckels-van Eekelen and Hubbert-Willis methods. In addition, the results aligned with the drilling report, but the Hubbert-Willis method aligned more closely with the LOT and FIT test results. Moreover, a comparison of in-situ stress between the oilfield and the well indicated that, despite the prevalent slip-strike fault stress map, the stress regime of this well was normal. Ultimately, the in-situ stress was determined by overlaying the stress polygon obtained from the sonic log with the one derived from the Mogi-Coulomb analysis. Analysis of the optimal mud window using various failure criteria indicated that the Mogi-Coulomb criterion takes precedence over other failure criteria. The optimal mud window ranges from 13.5 to 13.95 at a depth between 4002 and 4309. The Mohr-Coulomb failure criteria resulted in underestimating the optimal mud window compared to other criteria.

Keywords

Main Subjects


[1]. Qiu, K., Felgueroso, J. G., Lalinde, G., Naas, A., Coste, B., & Fuller, J. (2008, March). Geomechanics enables the success of horizontal well drilling in Libya: A case study. In SPE/IADC Drilling Conference and Exhibition (pp. SPE-111384). SPE. doi.org/10.2118/111384-MS.##
[2]. Zeynali, M. E. (2012). Mechanical and physico-chemical aspects of wellbore stability during drilling operations. Journal of Petroleum Science and Engineering, 82, 120-124. ##
[3]. Abbas, A. K., Alameedy, U., Alsaba, M., & Rushdi, S. (2018, December). Wellbore trajectory optimization using rate of penetration and wellbore stability analysis. In SPE International Heavy Oil Conference and Exhibition (p. D012S018R002). SPE. doi.org/10.2118/193755-MS. ##
[4]. Wang, W., Wen, H., Jiang, P., Zhang, P., Zhang, L., Xian, C., Li, J., Zhao, C., Li, Q. & Xie, Q. (2019, March). Application of anisotropic wellbore stability model and unconventional fracture model for lateral landing and wellbore trajectory optimization: a case study of shale gas in Jingmen Area, China. In International petroleum technology conference (p. D031S056R005). IPTC. doi.org/10.2523/IPTC-19368-MS. ##
[5]. صفرخانلو ع، ر.، دهقان، ع. ن. و شیخ ذکریایی، س. ج. (1402). مدل‌سازی عددی اثر شکاف طبیعی در گسترش شکاف هیدرولیکی بر پایه روش ناحیه چسبنده، پژوهش نفت، 133، 143-157، 10.22078 2023.prا/.5153.3283:اdoi. ##
[6]. دهقان، ع. ن.، گشتاسبی، ک.، آهنگری، ک.، جین، ی. و میسکیمینس، ج. (1394). مکانیسم شروع و گسترش شکست با استفاده از یک سیستم آزمایش شکاف هیدرولیکی سه محوره بر روی نمونه‌هایی از بلوک‎‌های سیمانی، پژوهش نفت، شماره 2-85، doi: 10.22078/pr.2016.607.
[7]. دهقان، ع. ن. و خدایی، م. (1396). مطالعه آزمایشگاهی تاثیر شکاف‎ از پیش موجود بر گسترش شکاف هیدرولیکی تحت تنش‎‌های سه محوری واقعی، پژوهش نفت، 95، 71-80 ،10.22078/2017.prا.2239.2039:اdoi. ##
[8]. دهقان، ع. ن. (1398). مطالعه آزمایشگاهی اثر سیمان‌شدگی شکاف طبیعی بر گسترش شکافت هیدرولیکی در مخازن نفت و گاز نامتعارف پژوهش نفت، 105، 111-100، doi: 10.22078/pr.2018.3353.2539. ##
[9]. Smirnov, N. Y. (2004). Mechanical earth model and integrated geomechanics approach as new frontier for petroleum industry. Journal of the Japanese Association for Petroleum Technology, 69(5), 501-508. doi.org/10.3720/japt.69.501. ##
[10]. Goodman, H. E., & Connolly, P. (2007, August). Reconciling subsurface uncertainty with the appropriate well design using the mechanical Earth model (MEM) approach. In SPE Nigeria Annual International Conference and Exhibition (pp. SPE-111913). SPE. doi.org/10.2118/111913-MS. ##
[11]. Yi, X. (2008, December). Wellbore Stability Predictions Using Mechanical Earth Model-A Case Study for Okan Field, Offshore Nigeria. In International Petroleum Technology Conference (pp. IPTC-12134). IPTC. doi.org/10.2523/IPTC-12134-MS. ##
[12]. Lee, D., Singh, V., & Berard, T. (2009, November). Construction of a Mechanical Earth Model and Wellbore Stability Analysis for a CO2 Injection Well. In SPE International Conference on CO2 Capture, Storage, and Utilization (pp. SPE-126624). SPE. Lee, D., Singh, V., & Berard, T. (2009, November). Construction of a Mechanical Earth Model and Wellbore Stability Analysis for a CO2 Injection Well. In SPE International Conference on CO2 Capture, Storage, and Utilization (pp. SPE-126624). SPE. doi.org/10.2118/126624-MS. ##
[13]. ShunChang, W., YiMing, J., ChunJiang, Z., BaiLin, W., XinQuan, Z., JiPing, T., JinHai, Y. & HongHai, F. (2010). Real-time downhole monitoring and logging reduced mud loss drastically for high-pressure gas wells in Tarim Basin, China. SPE Drilling & Completion, 25(02), 187-192. doi.org/10.2118/130377-PA. ##
[14]. Martocchia, F., Perfetto, R., & Saldungaray, P. (2014, November). Fracture Optimization Applying a Novel Traceable Proppant and a Refined Mechanical Earth Model in the Congo Onshore. In Abu Dhabi International Petroleum Exhibition and Conference (p. D021S037R004). SPE. doi.org/10.2118/171783-MS. ##
[15]. Dehghan, A. N. (2020). An experimental investigation into the influence of pre-existing natural fracture on the behavior and length of propagating hydraulic fracture. Engineering Fracture Mechanics, 240, 107330. ##
[16]. Dehghan, A. N., Goshtasbi, K., Ahangari, K., & Jin, Y. (2015). Experimental investigation of hydraulic fracture propagation in fractured blocks. Bulletin of Engineering Geology and the Environment, 74(3), 887-895. ##
[17]. Dehghan, A. N., Goshtasbi, K., Ahangari, K., & Jin, Y. (2015). The effect of natural fracture dip and strike on hydraulic fracture propagation. International Journal of Rock Mechanics and Mining Sciences, 75, 210-215. ##
[18]. Dehghan, A. N., Goshtasbi, K., Ahangari, K., & Jin, Y. (2016). Mechanism of fracture initiation and propagation using a tri-axial hydraulic fracturing test system in naturally fractured reservoirs. European Journal of Environmental and Civil Engineering, 20(5), 560-585. ##
[16]. Cuervo, S., Adachi, J., & Lombardo, E. (2018, June). Integration of 1D and 3D Mechanical Earth Models in oil shale plays. An example from the Vaca Muerta Formation (Argentina). In ARMA US Rock Mechanics/Geomechanics Symposium (pp. ARMA-2018). ARMA. ##
[17]. Muhammad, J. U., Sugiarto, C., Hadj Moussa, A., Kadadha, A., & Iturrios, C. (2020, February). Fully Automated Managed Pressure Drilling Delivers Precise Control Through High Pressures In a Narrow Drilling Window. In SPE/IADC Drilling Conference and Exhibition (p. D102S000R002). SPE. doi.org/10.2118/199557-MS. ##
[18]. Lothe, A. E., Cerasi, P., & Aghito, M. (2020). Digitized uncertainty handling of pore pressure and mud-weight window ahead of bit: North Sea Example. SPE Journal, 25(02), 529-540. doi.org/10.2118/189665-PA. ##
[19]. Bhardwaj, N., Gunasekaran, K., Kumar, A., & Dutta, J. (2019, April). Establishment of Appropriate Normal Compaction Trend NCT: A Critical Aspect for Reducing Uncertainty in 3D Pore Pressure Modelling. In SPE Oil and Gas India Conference and Exhibition? (p. D011S004R002). SPE. doi.org/10.2118/194662-MS. ##
[20]. Shen, G., & Shen, X. (2016, May). Widened safe mud window for subsalt well sections: a workflow and case study. In Offshore Technology Conference (p. D021S017R002). OTC. doi.org/10.4043/26917-MS. ##
[21]. Dehghan, A. N. (2020). An experimental investigation into the influence of pre-existing natural fracture onthe behavior and length of propagating hydraulic fracture. Engineering Fracture Mechanics, 240, 107330. ##
[22]. Dehghan, A. N., Goshtasbi, K., Ahangari, K., & Jin, Y. (2015). Experimental investigation of hydraulic fracture propagation in fractured blocks. Bulletin of Engineering Geology and the Environment, 74(3), 887-895. ##
[23]. Dehghan, A. N., Goshtasbi, K., Ahangari, K., & Jin, Y. (2015). The effect of natural fracture dip and strike on hydraulic fracture propagation. International Journal of Rock Mechanics and Mining Sciences, 75, 210-215. doi.org/10.1016/j.ijrmms.2015.02.001. ##
[24]. Dehghan, A. N., Goshtasbi, K., Ahangari, K., & Jin, Y. (2016). Mechanism of fracture initiation and propagation using a tri-axial hydraulic fracturing test system in naturally fractured reservoirs. European Journal of Environmental and Civil Engineering, 20(5), 560-585. ##
[25]. Adegbamigbe, T., Olamigoke, O., & Lawal, K. (2020, August). Application of a 1-D mechanical earth model for wellbore stability analysis in a shallow-water field, Niger Delta. In SPE Nigeria Annual International Conference and Exhibition (p. D013S017R002). SPE. doi.org/10.2118/203632-MS. ##
[26]. Allawi, R. H., & Al-Jawad, M. S. (2021). Wellbore instability management using geomechanical modeling and wellbore stability analysis for Zubair shale formation in Southern Iraq. Journal of Petroleum Exploration and Production Technology, 11(11), 4047-4062. ##
[27]. Al-Ajmi, A. M., & Zimmerman, R. W. (2006). Stability analysis of vertical boreholes using the Mogi–Coulomb failure criterion. International journal of rock mechanics and mining sciences, 43(8), 1200-1211. doi.org/10.1016/j.ijrmms.2006.04.001. ##
[28]. Ewy, R. T. (1998, July). Wellbore stability predictions using a modified Lade criterion. In SPE/ISRM Rock Mechanics in Petroleum Engineering (pp. SPE-47251). SPE. doi.org/10.2118/47251-MS. ##
[29]. Rahimi, R. (2014). The effect of using different rock failure criteria in wellbore stability analysis. Missouri University of Science and Technology. ##
[30]. Bagheri, H., Tanha, A. A., Doulati Ardejani, F., Heydari-Tajareh, M., & Larki, E. (2021). Geomechanical model and wellbore stability analysis utilizing acoustic impedance and reflection coefficient in a carbonate reservoir. Journal of Petroleum Exploration and Production Technology, 11(11), 3935-3961. ##
[31]. Heydari Gholanlo, H., & Nikkhah, M. (2023). Active Fault Detection by an Automatic Breakout Geometry Characterization Algorithm from Ultrasonic Borehole Imager. SPE Reservoir Evaluation & Engineering, 26(03), 565-576. doi.org/10.2118/214673-PA. ##
[32]. Abdulkarim, A., Kharitonov, A., El Gezeeri, T. M., Al Haddad, M., Halawah, Y. A., & Sabea, S. A. (2024). Integration of Seismic Poisson Impedance Data with Real-Time Geomechanics and Real-Time 3D Ultradeep Resistivity Inversion Enabled New Opportunities in Developed Field: Case Study from Kuwait. SPE Journal, 29(01), 175-187. doi.org/10.2118/212656-PA. ##
[33]. Aliko, E., Casciaro, D., Conte, A., Busollo, C., Baronio, E., & Abdo, E. A. (2025). Optimizing Well Integrity with Accurate Forecasting of Casing and Tubing Resistance Reduction Trends Through Innovative Numerical Modeling Techniques. SPE Journal, 30(01), 127-143. doi: https://doi.org/10.2118/216538-PA. ##
[34]. Carpenter, C. (2024). Real-time monitoring and control system enhances drilling-fluid management. Journal of Petroleum Technology, 76(11), 80-83. doi.org/10.2118/1124-0080-JPT. ##
[35]. Khouissat, A., & Michael, A. (2024). Blowout Contingency Decision-Making Leveraging Reservoir/Wellbore Pressure Modeling: Cap-and-Restrain or Cap-and-Divert?. SPE Journal, 29(12), 6775-6792. doi: https://doi.org/10.2118/223626-PA. ##
[36]. Hashemi, R., Saberi, F., Asoude, P., & Soleimani, B. (2024). Enhancing reservoir zonation through triple porosity system: a case study. SPE Journal, 29(06), 3043-3062. doi.org/10.2118/219491-PA. ##
[37]. گزارش‌های منتشر نشده شرکت ملی مناطق نفت خیر جنوب (بررسی سیال و سنگ مخزن در میدان جنوب غربی ایران آگوست سال 2018)، (گزارش تکمیل زمین شناسی چاه عمودی توصیفی یکی از میادین جنوب غربی ایران 18 مارچ 2018) و (گزارش ارزیابی نگاره تصویری از دهانه چاه اکتوبر 2024). ##
[38]. Houston (2019) Emerson announced the release of Geolog 19, the latest version of its formation evaluation software, and presented it at the 60th Annual Symposium of the Society for Petrophysics and Well Log Analysis (SPWLA), held June 15-19 in The Woodlands, Texas. ##
[39]. Heger, A. (2010). Geomechanical aspects of drilling in the vienna basin. [Master›s Thesis, Montanuniversitaet Leoben (000)].
[40]. Brudy, M., Zoback, M. D., Fuchs, K., Rummel, F., & Baumgärtner, J. (1997). Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: Implications for crustal strength. Journal of Geophysical Research: Solid Earth, 102(B8), 18453-18475. doi.org/10.1029/96JB02942. ##
[41]. Wiprut, D., Zoback, M., Hanssen, T. H., & Peska, P. (1997). Constraining the full stress tensor from observations of drilling-induced tensile fractures and leak-off tests: application to borehole stability and sand production on the Norwegian margin. International Journal of Rock Mechanics and Mining Sciences, 34(3-4), 365-e1. ##
[42]. Zhou, S. (1994). A program to model the initial shape and extent of borehole breakout. Computers & Geosciences, 20(7-8), 1143-1160. ##
[43]. Gholami, R., Moradzadeh, A., Rasouli, V., & Hanachi, J. (2014). Practical application of failure criteria in determining safe mud weight windows in drilling operations. Journal of Rock Mechanics and Geotechnical Engineering, 6(1), 13-25. doi.org/10.1016/j.jrmge.2013.11.002. ##
[44]. Hoseinpour, M., & Riahi, M. A. (2022). Determination of the mud weight window, optimum drilling trajectory, and wellbore stability using geomechanical parameters in one of the Iranian hydrocarbon reservoirs. Journal of Petroleum Exploration and Production Technology, 12(1), 63-82. ##