[1].Abidin, A. Z., Puspasari, T., & Nugroho, W. A. (2012). Polymers for enhanced oil recovery technology. Procedia Chemistry, 4, 11-16. doi.org/10.1016/j.proche.2012.06.002.##
[2]. Akbari, S., Mahmood, S. M., Tan, I. M., Ghaedi, H., & Ling, O. L. (2017). Assessment of polyacrylamide based Co-Polymers enhanced by functional group modifications with regards to salinity and hardness. Polymers, 9(12). doi.org/10.3390/polym9120647. ##
[3].Hamad, B. A., He, M., Xu, M., Liu, W., Mpelwa, M., Tang, S., Jin, L., & Song, J. (2020). A novel amphoteric polymer as a rheology enhancer and fluid-loss control agent for water-based drilling muds at elevated temperatures. ACS omega, 5(15), 8483-8495. doi.org/10.1021/acsomega.9b03774. ##
[4]. Sepehri, S., Soleyman, R., Varamesh, A., Valizadeh, M., & Nasiri, A. (2018). Effect of synthetic water-soluble polymers on the properties of the heavy water-based drilling fluid at high pressure-high temperature (HPHT) conditions. Journal of Petroleum Science and Engineering, 166, 850-856. https://doi.org/10.1016/j.petrol.2018.03.055. ##
[5]. Nasiri, A., Shahrabi, M. J. A., Nik, M. A. S., Heidari, H., & Valizadeh, M. (2018). Influence of monoethanolamine on thermal stability of starch in water based drilling fluid system. Petroleum Exploration and Development, 45(1), 167-171. https://doi.org/10.1016/S1876-3804(18)30017-X. ##
[6].Akpan, E. U., Enyi, G. C., Nasr, G., Yahaya, A. A., Ahmadu, A. A., & Saidu, B. (2019). Water-based drilling fluids for high-temperature applications and water-sensitive and dispersible shale formations. Journal of Petroleum Science and Engineering, 175, 1028-1038. https://doi.org/10.1016/j.petrol.2019.01.002. ##
[7].Davoodi, S., Al-Shargabi, M., Woodc, D. A., Rukavishnikov, V. S., & Minaev, K. M. (2023). Thermally stable and salt-resistant synthetic polymers as drilling fluid additives for deployment in harsh sub-surface conditions: A review. Journal of Molecular Liquids, 121117. https://doi.org/10.1016/j.molliq.2022.121117. ##
[8].Davoodi, S., SA, A. R., Soleimanian, A., & Jahromi, A. F. (2019). Application of a novel acrylamide copolymer containing highly hydrophobic comonomer as filtration control and rheology modifier additive in water-based drilling mud. Journal of Petroleum Science and Engineering, 180, 747-755. https://doi.org/10.1016/j.petrol.2019.04.069. ##
[9].Alfazazi, U., AlAmeri, W., & Hashmet, M. R. (2018). Screening of new HPAM base polymers for applications in high temperature and high salinity carbonate reservoirs Abu Dhabi International Petroleum Exhibition & Conference. doi.org/10.2118/192805-MS. ##
[10].Ali, I., Ahmad, M., & Ganat, T. (2022). Biopolymeric formulations for filtrate control applications in water-based drilling muds: A review. Journal of Petroleum Science and Engineering, 210, 110021. doi.org/10.1016/j.petrol.2021.110021. ##
[11].Chu, Q., & Lin, L. (2019). Effect of molecular flexibility on the rheological and filtration properties of synthetic polymers used as fluid loss additives in water-based drilling fluid. RSC Advances, 9(15), 8608-8619. https://doi.org/10.1039/C9RA00038K.
[12].www.pharmacy180.com/article/free-radical-polymerization-1531/.##
[13].Roy, P. K., Swami, V., Kumar, D., & Rajagopal, C. (2011). Removal of toxic metals using superabsorbent
polyelectrolytic hydrogels. Journal of Applied Polymer Science, 122(4), 2415-2423. doi.org/10.1002/app.34384. ##
[14]. Lai, N., Dong, W., Ye, Z., Dong, J., Qin, X., Chen, W., & Chen, K. (2013). A water‐soluble acrylamide hydrophobically associating polymer: synthesis, characterization, and properties as EOR chemical. Journal of Applied Polymer Science, 129(4), 1888-1896. doi.org/10.1002/app.38893. ##
[15]. Dupuis, G., Antignard, S., Giovannetti, B., Gaillard, N., Jouenne, S., Bourdarot, G., Morel, D., & Zaitoun, A. (2017). A new thermally stable synthetic polymer for harsh conditions of Middle East Reservoirs. Part I. Thermal Stability and Injection in Carbonate Cores Abu Dhabi International Petroleum Exhibition & Conference. doi.org/10.2118/188479-MS. ##
[16]. www.polymersource.ca. ##
[17]. Sajad, Kiani & Alexander, Shirin & Barron, Andrew. (2020). Nanoparticles, polymers, and surfactants as emerging platforms in fluid flow transport. 10.13140/RG.2.2.20954.36809. doi.org/10.13140/RG.2.2.20954.36809. ##
[18]. Turkoz, E., Perazzo, A., Arnold, C. B., & Stone, H. A. (2018). Salt type and concentration affect the viscoelasticity of polyelectrolyte solutions. Applied Physics Letters, 112(20). doi.org/10.1063/1.5026573. ##
[19].www.westernchems.com/Product_Details/Acrylic-Acid. ##
[20].www.polymersource.ca. ##
[21]. Árok, Z. V., Sáringer, S., Takács, D., Bretz, C., Juhász, Á., & Szilagyi, I. (2023). Effect of salinity on solution properties of a partially hydrolyzed polyacrylamide. Journal of Molecular Liquids, 384, 122192. doi.org/10.1016/j.molliq.2023.122192. ##
[22]. Zhou, H., Galindo, K. A., & Zha, W. (2017). Synergistic effect of thermally stable polymers for HPHT brine-based drill-in fluids. SPE Middle East Oil & Gas Show and Conference, doi.org/10.2118/183872-MS. ##
[23]. Sarsenbekuly, B., Kang, W., Yang, H., Zhao, B., Aidarova, S., Yu, B., & Issakhov, M. (2017). Evaluation of rheological properties of a novel thermo-viscosifying functional polymer for enhanced oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 532, 405-410. https://doi.org/https://doi.org/10.1016/j.colsurfa.2017.04.053 . ##
[24].www.tcichemicals.com/IN/en/p/A0926. ##