Preparation and Characterization of Composite Graphene Oxide Composite Membrane Supported on Modified Ceramics for Efficient Removal of Salt from Water

Document Type : Research Paper

Authors

1 Membrane Research Center, Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran

2 Membrane Research Center, Advanced Research Center for Chemical Engineering, Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran

3 Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran

Abstract

Water and wastewater treatment is one of main strategies to overcome the water sagacity/pollution. The membrane processes are among efficient approaches to address this issue. In this study, asymmetric graphene oxide (GO) membranes were fabricated on modified α-alumina substrates via vacuum filtration to achieve high-efficiency salt rejection from aqueous solutions. The fabricated membranes were evaluated by structural and functional characterization methods, including field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). Structural evaluations revealed that the membrane exhibits a multilayer architecture, with graphene oxide uniformly coating the gamma-alumina interlayer surface. The behavior (permeability and salt rejection) of the fabricated membranes in the removal of sodium chloride and calcium chloride salts with different concentrations (200, 500 and 1000 ppm) from aqueous solutions was investigated. The results showed that the permeation flux of this membrane in the processing of different sodium chloride and calcium chloride salt solutions is almost constant and equal to 3.86 LMH.Bar-1. This stability in the permeation flux indicates a stable and favorable performance of the membrane in the salt filtration process. This work investigates the mechanism of salt rejection in the fabricated composite membrane. The results show that under optimal conditions, the membrane permeation is about 4.5 LMH.Bar-1 and the membrane salt rejection for sodium chloride and calcium chloride solution feeds (200 ppm) reaches 55.2 and 65.6 %, respectively. The research results indicate the high potential of asymmetric graphene oxide membranes fabricated on modified substrates for low-pressure water desalination.

Keywords

Main Subjects


[1]. Mahmoud, K. A., Mansoor, B., Mansour, A., & Khraisheh, M. (2015). Functional graphene nanosheets: The next generation membranes for water desalination. Desalination, 356, 208–225. doi.org/10.1016/j.desal.2014.10.025.##
[2]. Elimelech, M., & Phillip, W. A. (2011). The future of seawater desalination: Energy, technology, and the environment. Science, 333 (6043), 712–717. doi.org/10.1126/science.1200488. ##
[3]. Qian, L., Wang, H., Yang, J., Chen, X., Chang, X., Nan, Y., Liu, T. (2020). Amino acid cross-linked graphene oxide membranes for metal ions permeation, insertion and antibacterial properties. Nanomaterials, 10 (10), 296. https://doi.org/10.3390/nano10020296. ##
[4]. Bergquist, A. M., Choe, J. K., Strathmann, T. J., & Werth, C. J. (2016). Evaluation of a hybrid ion exchange-catalyst treatment technology for nitrate removal from drinking water. Water Research, 96, 177–187. https://doi.org/10.1016/j.watres.2016.03.054. ##
[5]. Wu, C.-Y., Chen, S.-S., Zhang, D.-Z., & Kobayashi, J. (2017). Hg removal and the effects of coexisting metals in forward osmosis and membrane distillation. Water Science and Technology, 75 (11), 2622–2630. doi.org/10.2166/wst.2017.126. ##
[6]. Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39 (1), 228–240. doi.org/10.1039/B917103G. ##
[7]. Han, Y., Jiang, Y., & Gao, C. (2015). High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Applied Materials & Interfaces, 7 (15), 8147–8155. doi.org/10.1021/acsami.5b00986. ##
[8]. Goh, K., Setiawan, L., Wei, L., Si, R., Fane, A. G., Wang, R., & Chen, Y. (2015). Graphene oxide as effective selective barriers on a hollow fiber membrane for water treatment process. Journal of Membrane Science, 474, 244–253. doi.org/10.1016/j.memsci.2014.09.057. ##
[9]. Aba, N. F. D., Chong, J. Y., Wang, B., Mattevi, C., & Li, K. (2015). Graphene oxide membranes on ceramic hollow fibers – Microstructural stability and nanofiltration performance. Journal of Membrane Science, 484, 87–94. doi.org/10.1016/j.memsci.2015.03.001. ##
[10]. Zheng, B., Jia, S., & Tian, Y. (2024). Improvement of heavy metal separation performance by positively charged small-sized graphene oxide membrane. Environmental Technology, 45 (13), 2471–2485. doi.org/10.1080/09593330.2023.2185817. ##
[11]. Wu, T., Moghadam, F., & Li, K. (2022). High-performance porous graphene oxide hollow fiber membranes with tailored pore sizes for water purification. Journal of Membrane Science, 645, 120216. doi.org/10.1016/j.memsci.2021.120216. ##
[12]. Siahkamari, L., & Bakhtiari, O. (2025). Tuning of graphene oxide composite membranes› structural and pervaporative ethanol dehydration performance by cation coordination/crosslinking and in situ MOF-303 synthesis. Journal of Environmental Chemical Engineering, 13 (4), 117204. https://doi.org/10.1016/j.jece.2025.117204. ##
[13]. Liu, W., Wang, D., Soomro, R. A., Fu, F., Qiao, N., Yu, Y., Xu, B. (2019). Ceramic supported attapulgite-graphene oxide composite membrane for efficient removal of heavy metal contamination. Journal of Membrane Science, 591, 117323. doi.org/10.1016/j.memsci.2019.117323. ##
[14]. Hu, X., Yu, Y., Lin, N., Ren, S., Zhang, X., Wang, Y., & Zhou, J. (2018). Graphene oxide/Al2O3 membrane with efficient salt rejection for water purification. Water Supply, 18 (6), 2162–2169. doi.org/10.2166/ws.2018.037. ##
[15]. Parsamehr, P. S., Zahed, M., Tofighy, M. A., Mohammadi, T., & Rezakazemi, M. (2019). Preparation of novel cross-linked graphene oxide membrane for desalination applications using (EDC and NHS)-activated graphene oxide and PEI. Desalination, 468, 114079. doi.org/10.1016/j.desal.2019.114079. ##
[16]. Chen, X., Feng, Z., Gohil, J., Stafford, C. M., Dai, N., Huang, L., & Lin, H. (2020). Reduced holey graphene oxide membranes for desalination with improved water permeance. ACS Applied Materials & Interfaces, 12 (1), 1387–1394. doi.org/10.1021/acsami.9b19255. ##
[17]. Chen, W., Mirshekarloo, M. S., El Meragawi, S., Turpin, G., Pilkington, R., Polyzos, A., & Majumder, M. (2022). Controlled nanopore formation in graphene/graphene oxide nanosheets: Implication for water transport. ACS Nano, 16 (3), 3811–3823. doi.org/10.1021/acsnano.1c06184. ##
[18]. Vafa, N., Firoozabadi, B., & Pishkenari, H. N. (2024). Hybrid graphene oxide-graphene membrane for efficient water desalination: Insights from molecular dynamics simulation. Journal of Molecular Liquids, 407, 125241. doi.org/10.1016/j.molliq.2024.125241. ##
[19]. Yasmeen, R., Khan, F. S., Nisa, W. U., Saleem, A. R., Awais, M., Jameel, M., Khan, M. I. (2025). Enhanced water purification by using graphene oxide nano-membranes: A novel approach for mitigating industrial pollutant. Carbon Trends, 19, 100486. doi.org/10.1016/j.cartre.2025.100486. ##
[20]. Yarighaleh, Z., & Bakhtiari, O. (2023). Modification of ceramic-supported graphene oxide composite membranes to dedicate them the dry state CO2 permselectivity. Gas Science and Engineering, 116, 205049. doi.org/10.1016/j.jgsce.2023.205049. ##
[21]. Zhao, G., Hu, R., Zhao, X., He, Y., & Zhu, H. (2019). High flux nanofiltration membranes prepared with a graphene oxide homo-structure. Journal of Membrane Science, 585, 29–37. doi.org/10.1016/j.memsci.2019.05.028. ##
[22]. Wang, K., Tian, Z., & Yin, N. (2018). Significantly enhancing Cu (II) adsorption onto Zr-MOFs through novel cross-flow disturbance of ceramic membrane. Industrial & Engineering Chemistry Research, 57(10), 3773–3780. doi.org/10.1021/acs.iecr.7b04850. ##
[23]. Zheng, B., Jia, S., & Tian, Y. (2023). Improvement of heavy metal separation performance by positively charged small-sized graphene oxide membrane. Environmental Technology, 1–15. doi.org/10.1080/09593330.2023.2185817. ##
[24]. Raghubanshi, H., Ngobeni, S. M., Osikoya, A. O., Shooto, N. D., Dikio, C. W., Naidoo, E. B., Dikio, E.D., Pandey, R.K. Prakash, R. (2017). Synthesis of graphene oxide and its application for the adsorption of Pb+2 from aqueous solution. Journal of Industrial and Engineering Chemistry, 47, 169–178. doi.org/10.1016/j.jiec.2016.11.028. ##
[25]. Dave, S. H., Gong, C., Robertson, A. W., Warner, J. H., & Grossman, J. C. (2016). Chemistry and structure of graphene oxide via direct imaging. ACS Nano, 10(8), 7515–7522. doi.org/10.1021/acsnano.6b02391. ##
[26]. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V., & Geim, A. K. (2012). Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science, 335(6067), 442–444. doi.org/10.1126/science.1211694. ##
[27]. Huang, L., Huang, S., Venna, S. R., & Lin, H. (2018). Rightsizing nanochannels in reduced graphene oxide membranes by solvating for dye desalination. Environmental Science & Technology, 52(21), 12649–12655. doi.org/10.1021/acs.est.8b03661. ##
[28]. Edokali, M., Bocking, R., Mehrabi, M., Massey, A., Harbottle, D., Menzel, R., & Hassanpour, A. (2023). Chemical modification of reduced graphene oxide membranes: Enhanced desalination performance and structural properties for forward osmosis. Chemical Engineering Research and Design, 199, 659–675. doi.org/10.1016/j.cherd.2023.10.022. ##
[29]. Rajaura, R. S., Srivastava, S., Sharma, V., Sharma, P. K., Lal, C., Singh, M., Vijay, Y. K. (2016). Role of interlayer spacing and functional group on the hydrogen storage properties of graphene oxide and reduced graphene oxide. International Journal of Hydrogen Energy, 41(22), 9454–9461. doi.org/10.1016/j.ijhydene.2016.04.115. ##
[30]. Zhou, F., Tien, H. N., Dong, Q., Xu, W. L., Li, H., Li, S., & Yu, M. (2019). Ultrathin, ethylenediamine-functionalized graphene oxide membranes on hollow fibers for CO2 capture. Journal of Membrane Science, 573, 184–191. doi.org/10.1016/j.memsci.2018.11.080. ##
[31]. Delir Kheyrollahi Nezhad, P., Haghighi, M., & Rahmani, F. (2018). CO2/O2-enhanced ethane dehydrogenation over a sol–gel synthesized Ni/ZrO2–MgO nanocatalyst: Effects of MgO, ZrO2, and NiO on the catalytic performance. Particulate Science and Technology, 36(8), 1017–1028. doi.org/10.1080/02726351.2017.1340376. ##
[32]. Moghaddasi, A. R., Pourbagheri, E., Hosseini, S. M., & Parvizian, F. (2019). Surface modification of polyethersulfone nanofiltration membrane using chitosan-graphene oxide nanocomposite thin film to reduce fouling and improve performance. Oil Research, 29(98-2), 46–60. ##
[33]. Baig, N., Salhi, B., Khan, I. A., Aljundi, I. H., & Khan, N. A. (2024). Thin polyamide layer cross-linked graphene-oxide based ceramic membranes for efficient separation of the surfactant stabilized oil-in-water emulsions. Chemical Engineering Research and Design, 208, 52–61. doi.org/10.1016/j.cherd.2024.06.044. ##
[34]. Meng, N., Sun, X., Liu, J., Mi, J., & Rong, R. (2024). Effect of addition amount of ethylenediamine on interlayer nanochannels and the separation performance of graphene oxide membranes. Polymers, 16(22), 3123. doi.org/10.3390/polym16223123. ##
[35]. Hu, X., Yu, Y., Zhou, J., Wang, Y., Liang, J., Zhang, X., Song, L. (2015). The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. Journal of Membrane Science, 476, 200–204. doi.org/10.1016/j.memsci.2014.11.043.
[36]. Wang, J., Zhang, P., Liang, B., Liu, Y., Xu, T., Wang, L., Pan, K. (2016). Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment. ACS Applied Materials & Interfaces, 8(9), 6211–6218. doi.org/10.1021/acsami.5b12723. ##
[37]. Xu, Q., Xu, H., Chen, J., Lv, Y., Dong, C., & Sreeprasad, T. S. (2015). Graphene and graphene oxide: Advanced membranes for gas separation and water purification. Inorganic Chemistry Frontiers, 2(5), 417–424. doi.org/10.1039/C4QI00230J. ##
[38]. Hu, X., Yu, Y., Hou, W., Zhou, J., & Song, L. (2013). Effects of particle size and pH value on the hydrophilicity of graphene oxide. Applied Surface Science, 273, 118–121. doi.org/10.1016/j.apsusc.2013.01.201. ##
[39]. Chen, A., Liu, W., Soomro, R. A., Wei, Y., Zhu, X., Qiao, N., Xu, B. (2022). PVA-integrated graphene oxide-attapulgite composite membrane for efficient removal of heavy metal contaminants. Environmental Science and Pollution Research, 29(56), 84410–84420. doi.org/10.1007/s11356-022-20810-0. ##
[40]. Ju, H., Duan, J., Lu, H., & Xu, W. (2021). Cross-linking with diamine monomers to prepare graphene oxide composite membranes with varying d-spacing for enhanced desalination properties. Frontiers in Chemistry, 9, 779304. doi.org/10.3389/fchem.2021.779304. ##
[41]. Zhang, P., Gong, J.-L., Zeng, G.-M., Deng, C.-H., Yang, H.-C., Liu, H.-Y., & Huan, S.-Y. (2017). Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal. Chemical Engineering Journal, 322, 657–666. doi.org/10.1016/j.cej.2017.04. ##