[1]. Mahmoud, K. A., Mansoor, B., Mansour, A., & Khraisheh, M. (2015). Functional graphene nanosheets: The next generation membranes for water desalination. Desalination, 356, 208–225. doi.org/10.1016/j.desal.2014.10.025.##
[2]. Elimelech, M., & Phillip, W. A. (2011). The future of seawater desalination: Energy, technology, and the environment. Science, 333 (6043), 712–717. doi.org/10.1126/science.1200488. ##
[3]. Qian, L., Wang, H., Yang, J., Chen, X., Chang, X., Nan, Y., Liu, T. (2020). Amino acid cross-linked graphene oxide membranes for metal ions permeation, insertion and antibacterial properties. Nanomaterials, 10 (10), 296. https://doi.org/10.3390/nano10020296. ##
[4]. Bergquist, A. M., Choe, J. K., Strathmann, T. J., & Werth, C. J. (2016). Evaluation of a hybrid ion exchange-catalyst treatment technology for nitrate removal from drinking water. Water Research, 96, 177–187. https://doi.org/10.1016/j.watres.2016.03.054. ##
[5]. Wu, C.-Y., Chen, S.-S., Zhang, D.-Z., & Kobayashi, J. (2017). Hg removal and the effects of coexisting metals in forward osmosis and membrane distillation. Water Science and Technology, 75 (11), 2622–2630. doi.org/10.2166/wst.2017.126. ##
[6]. Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39 (1), 228–240. doi.org/10.1039/B917103G. ##
[7]. Han, Y., Jiang, Y., & Gao, C. (2015). High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Applied Materials & Interfaces, 7 (15), 8147–8155. doi.org/10.1021/acsami.5b00986. ##
[8]. Goh, K., Setiawan, L., Wei, L., Si, R., Fane, A. G., Wang, R., & Chen, Y. (2015). Graphene oxide as effective selective barriers on a hollow fiber membrane for water treatment process. Journal of Membrane Science, 474, 244–253. doi.org/10.1016/j.memsci.2014.09.057. ##
[9]. Aba, N. F. D., Chong, J. Y., Wang, B., Mattevi, C., & Li, K. (2015). Graphene oxide membranes on ceramic hollow fibers – Microstructural stability and nanofiltration performance. Journal of Membrane Science, 484, 87–94. doi.org/10.1016/j.memsci.2015.03.001. ##
[10]. Zheng, B., Jia, S., & Tian, Y. (2024). Improvement of heavy metal separation performance by positively charged small-sized graphene oxide membrane. Environmental Technology, 45 (13), 2471–2485. doi.org/10.1080/09593330.2023.2185817. ##
[11]. Wu, T., Moghadam, F., & Li, K. (2022). High-performance porous graphene oxide hollow fiber membranes with tailored pore sizes for water purification. Journal of Membrane Science, 645, 120216. doi.org/10.1016/j.memsci.2021.120216. ##
[12]. Siahkamari, L., & Bakhtiari, O. (2025). Tuning of graphene oxide composite membranes› structural and pervaporative ethanol dehydration performance by cation coordination/crosslinking and in situ MOF-303 synthesis. Journal of Environmental Chemical Engineering, 13 (4), 117204. https://doi.org/10.1016/j.jece.2025.117204. ##
[13]. Liu, W., Wang, D., Soomro, R. A., Fu, F., Qiao, N., Yu, Y., Xu, B. (2019). Ceramic supported attapulgite-graphene oxide composite membrane for efficient removal of heavy metal contamination. Journal of Membrane Science, 591, 117323. doi.org/10.1016/j.memsci.2019.117323. ##
[14]. Hu, X., Yu, Y., Lin, N., Ren, S., Zhang, X., Wang, Y., & Zhou, J. (2018). Graphene oxide/Al2O3 membrane with efficient salt rejection for water purification. Water Supply, 18 (6), 2162–2169. doi.org/10.2166/ws.2018.037. ##
[15]. Parsamehr, P. S., Zahed, M., Tofighy, M. A., Mohammadi, T., & Rezakazemi, M. (2019). Preparation of novel cross-linked graphene oxide membrane for desalination applications using (EDC and NHS)-activated graphene oxide and PEI. Desalination, 468, 114079. doi.org/10.1016/j.desal.2019.114079. ##
[16]. Chen, X., Feng, Z., Gohil, J., Stafford, C. M., Dai, N., Huang, L., & Lin, H. (2020). Reduced holey graphene oxide membranes for desalination with improved water permeance. ACS Applied Materials & Interfaces, 12 (1), 1387–1394. doi.org/10.1021/acsami.9b19255. ##
[17]. Chen, W., Mirshekarloo, M. S., El Meragawi, S., Turpin, G., Pilkington, R., Polyzos, A., & Majumder, M. (2022). Controlled nanopore formation in graphene/graphene oxide nanosheets: Implication for water transport. ACS Nano, 16 (3), 3811–3823. doi.org/10.1021/acsnano.1c06184. ##
[18]. Vafa, N., Firoozabadi, B., & Pishkenari, H. N. (2024). Hybrid graphene oxide-graphene membrane for efficient water desalination: Insights from molecular dynamics simulation. Journal of Molecular Liquids, 407, 125241. doi.org/10.1016/j.molliq.2024.125241. ##
[19]. Yasmeen, R., Khan, F. S., Nisa, W. U., Saleem, A. R., Awais, M., Jameel, M., Khan, M. I. (2025). Enhanced water purification by using graphene oxide nano-membranes: A novel approach for mitigating industrial pollutant. Carbon Trends, 19, 100486. doi.org/10.1016/j.cartre.2025.100486. ##
[20]. Yarighaleh, Z., & Bakhtiari, O. (2023). Modification of ceramic-supported graphene oxide composite membranes to dedicate them the dry state CO2 permselectivity. Gas Science and Engineering, 116, 205049. doi.org/10.1016/j.jgsce.2023.205049. ##
[21]. Zhao, G., Hu, R., Zhao, X., He, Y., & Zhu, H. (2019). High flux nanofiltration membranes prepared with a graphene oxide homo-structure. Journal of Membrane Science, 585, 29–37. doi.org/10.1016/j.memsci.2019.05.028. ##
[22]. Wang, K., Tian, Z., & Yin, N. (2018). Significantly enhancing Cu (II) adsorption onto Zr-MOFs through novel cross-flow disturbance of ceramic membrane. Industrial & Engineering Chemistry Research, 57(10), 3773–3780. doi.org/10.1021/acs.iecr.7b04850. ##
[23]. Zheng, B., Jia, S., & Tian, Y. (2023). Improvement of heavy metal separation performance by positively charged small-sized graphene oxide membrane. Environmental Technology, 1–15. doi.org/10.1080/09593330.2023.2185817. ##
[24]. Raghubanshi, H., Ngobeni, S. M., Osikoya, A. O., Shooto, N. D., Dikio, C. W., Naidoo, E. B., Dikio, E.D., Pandey, R.K. Prakash, R. (2017). Synthesis of graphene oxide and its application for the adsorption of Pb+2 from aqueous solution. Journal of Industrial and Engineering Chemistry, 47, 169–178. doi.org/10.1016/j.jiec.2016.11.028. ##
[25]. Dave, S. H., Gong, C., Robertson, A. W., Warner, J. H., & Grossman, J. C. (2016). Chemistry and structure of graphene oxide via direct imaging. ACS Nano, 10(8), 7515–7522. doi.org/10.1021/acsnano.6b02391. ##
[26]. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V., & Geim, A. K. (2012). Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science, 335(6067), 442–444. doi.org/10.1126/science.1211694. ##
[27]. Huang, L., Huang, S., Venna, S. R., & Lin, H. (2018). Rightsizing nanochannels in reduced graphene oxide membranes by solvating for dye desalination. Environmental Science & Technology, 52(21), 12649–12655. doi.org/10.1021/acs.est.8b03661. ##
[28]. Edokali, M., Bocking, R., Mehrabi, M., Massey, A., Harbottle, D., Menzel, R., & Hassanpour, A. (2023). Chemical modification of reduced graphene oxide membranes: Enhanced desalination performance and structural properties for forward osmosis. Chemical Engineering Research and Design, 199, 659–675. doi.org/10.1016/j.cherd.2023.10.022. ##
[29]. Rajaura, R. S., Srivastava, S., Sharma, V., Sharma, P. K., Lal, C., Singh, M., Vijay, Y. K. (2016). Role of interlayer spacing and functional group on the hydrogen storage properties of graphene oxide and reduced graphene oxide. International Journal of Hydrogen Energy, 41(22), 9454–9461. doi.org/10.1016/j.ijhydene.2016.04.115. ##
[30]. Zhou, F., Tien, H. N., Dong, Q., Xu, W. L., Li, H., Li, S., & Yu, M. (2019). Ultrathin, ethylenediamine-functionalized graphene oxide membranes on hollow fibers for CO2 capture. Journal of Membrane Science, 573, 184–191. doi.org/10.1016/j.memsci.2018.11.080. ##
[31]. Delir Kheyrollahi Nezhad, P., Haghighi, M., & Rahmani, F. (2018). CO2/O2-enhanced ethane dehydrogenation over a sol–gel synthesized Ni/ZrO2–MgO nanocatalyst: Effects of MgO, ZrO2, and NiO on the catalytic performance. Particulate Science and Technology, 36(8), 1017–1028. doi.org/10.1080/02726351.2017.1340376. ##
[32]. Moghaddasi, A. R., Pourbagheri, E., Hosseini, S. M., & Parvizian, F. (2019). Surface modification of polyethersulfone nanofiltration membrane using chitosan-graphene oxide nanocomposite thin film to reduce fouling and improve performance. Oil Research, 29(98-2), 46–60. ##
[33]. Baig, N., Salhi, B., Khan, I. A., Aljundi, I. H., & Khan, N. A. (2024). Thin polyamide layer cross-linked graphene-oxide based ceramic membranes for efficient separation of the surfactant stabilized oil-in-water emulsions. Chemical Engineering Research and Design, 208, 52–61. doi.org/10.1016/j.cherd.2024.06.044. ##
[34]. Meng, N., Sun, X., Liu, J., Mi, J., & Rong, R. (2024). Effect of addition amount of ethylenediamine on interlayer nanochannels and the separation performance of graphene oxide membranes. Polymers, 16(22), 3123. doi.org/10.3390/polym16223123. ##
[35]. Hu, X., Yu, Y., Zhou, J., Wang, Y., Liang, J., Zhang, X., Song, L. (2015). The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. Journal of Membrane Science, 476, 200–204. doi.org/10.1016/j.memsci.2014.11.043.
[36]. Wang, J., Zhang, P., Liang, B., Liu, Y., Xu, T., Wang, L., Pan, K. (2016). Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment. ACS Applied Materials & Interfaces, 8(9), 6211–6218. doi.org/10.1021/acsami.5b12723. ##
[37]. Xu, Q., Xu, H., Chen, J., Lv, Y., Dong, C., & Sreeprasad, T. S. (2015). Graphene and graphene oxide: Advanced membranes for gas separation and water purification. Inorganic Chemistry Frontiers, 2(5), 417–424. doi.org/10.1039/C4QI00230J. ##
[38]. Hu, X., Yu, Y., Hou, W., Zhou, J., & Song, L. (2013). Effects of particle size and pH value on the hydrophilicity of graphene oxide. Applied Surface Science, 273, 118–121. doi.org/10.1016/j.apsusc.2013.01.201. ##
[39]. Chen, A., Liu, W., Soomro, R. A., Wei, Y., Zhu, X., Qiao, N., Xu, B. (2022). PVA-integrated graphene oxide-attapulgite composite membrane for efficient removal of heavy metal contaminants. Environmental Science and Pollution Research, 29(56), 84410–84420. doi.org/10.1007/s11356-022-20810-0. ##
[40]. Ju, H., Duan, J., Lu, H., & Xu, W. (2021). Cross-linking with diamine monomers to prepare graphene oxide composite membranes with varying d-spacing for enhanced desalination properties. Frontiers in Chemistry, 9, 779304. doi.org/10.3389/fchem.2021.779304. ##
[41]. Zhang, P., Gong, J.-L., Zeng, G.-M., Deng, C.-H., Yang, H.-C., Liu, H.-Y., & Huan, S.-Y. (2017). Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal. Chemical Engineering Journal, 322, 657–666. doi.org/10.1016/j.cej.2017.04. ##