[1]. Dorhjie, D. B., Aminev, T., Gimazov, A., Khamidullin, D., Kuporosov, D., Maerle, K., Grishin, P. & Cheremisin, A. (2025). Impact of depletion rate on the thermodynamics of gas condensates: Experimental insights and analysis. Gas Science and Engineering, 134, 205534. doi.org/10.1016/j.jgsce.2024.205534. ##
[2]. Lei, W., Chen, D., Wang, Q., (2025). Combined use of petroleum inclusion analysis, PVT simulation, and basin modeling for reconstruction of deep fluid phase evolution in condensate gas reservoirs, Marine and Petroleum Geology, 171, 107210. doi.org/10.1016/j.marpetgeo.2024.107210. ##
[3]. Fussell, D. D. (1973). Single-well performance predictions for gas condensate reservoirs. Journal of Petroleum Technology, 25(07), 860-870. doi.org/10.2118/4072-PA. ##
[4]. Hosseinzadegan, A., Mahdiyar, H., Raoof, A., Nikooee, E., & Qajar, J. (2023). The pore-network modelingof gas-condensate flow: Elucidating the effect of pore morphology, wettability, interfacial tension, and flow rate. Geoenergy Science and Engineering, 229, 211937. doi.org/10.1016/j.geoen.2023.211937. ##
[5]. Mohamadi-Baghmolaei, M., Sakhaei, Z., Azin, R., Osfouri, S., Zendehboudi, S., Shiri, H., & Duan, X. (2021). Modeling of well productivity enhancement in a gas-condensate reservoir through wettability alteration: A comparison between smart optimization strategies. Journal of Natural Gas Science and Engineering, 94, 104059. doi.org/10.1016/j.jngse.2021.104059. ##
[6]. Ajagbe, O., & Fahes, M. (2020). Establishing screening criteria for field application of wettability alteration in gas-condensate reservoirs. Journal of Petroleum Science and Engineering, 193, 107342. doi.org/10.1016/j.petrol.2020.107342. ##
[7]. Ali, N. E. C., Zoghbi, B., Fahes, M., Nasrabadi, H., & Retnanto, A. (2019). The impact of near-wellbore wettability on the production of gas and condensate: Insights from experiments and simulations. Journal of Petroleum Science and Engineering, 175, 215-223. doi.org/10.1016/j.petrol.2018.12.029. ##
[8]. Firoozabadi, A., & Li, K., (2000). Experimental study of wettability alteration to preferential gas-wetting in porous media and its effects. SPE Reservoir Evaluation and Engineering, 3(2): 139-149. doi.org/10.2118/62515-PA. ##
[9]. Li, k., Liu, Y., Huang, G., (2011). Enhanced gas-condensate production by wettability alteration to gas wetness, Journal of Petroleum Science and Engineering, 78, 505-509. doi.org/10.1016/j.petrol.2011.08.001. ##
[10]. Karandish, G.R., Rahimpour, M.R., Sharifzadeh, S., (2015). Wettability alteration in gas-condensate carbonate reservoir using anionic fluorinated treatment, Chemical Engineering Research and Design, 93, 554-564. doi.org/10.1016/j.cherd.2014.05.019. ##
[11]. Hoseinpour, S.A., Madhi, M., Norouzi, H., Mohammadi, A.M., (2019). Condensate blockage alleviation around gas-condensate producing wells using wettability alteration, Journal of Natural Gas Science and Engineering, 62, 214-223. doi.org/10.1016/j.jngse.2018.12.006. ##
[12]. Franco-Aguirre, M., Zabala, R., Lopera, S.H., Franco, C.A., Cortés, F.B., (2018). Interaction of anionic surfactant-nanoparticles for gas-wettability alteration of sandstone in tight gas-condensate reservoirs. Journal of Natural Gas Science & Engineering, 17: 1-41. doi.org/10.1016/j.jngse.2017.12.027. ##
[13]. Alajmei, Sh., (2023). Wettability alteration of Berea sandstone for gas condensate applications. ACS Omega, 8: 43690−43697. doi.org/10.1021/acsomega.3c05364. ##
[14]. Gandomkar, A., Torabi, F., Nasriani, H., Enick, R.M., (2023). Decreasing asphaltene precipitation and deposition during immiscible gas injection via the introduction of a CO2-soluble asphaltene inhibitor, SPE Journal, SPE-214698-PA. doi.org/10.2118/214698-PA. ##
[15]. Torabi, F., Gandomkar, A., (2024). Experimental Evaluation of CO2-Soluble Nonionic Surfactants for Wettability Alteration to Intermediate CO2-Oil Wet during Immiscible Gas Injection, SPE Journal, SPE-221487-PA. doi.org/10.2118/221487-PA. ##
[16]. Gandomkar, A., Torabi, F., Nasriani, H., Enick, R.M., (2025). Maximising CO2 sequestration efficiency in deep saline aquifers through in-situ generation of CO2-in-brine foam incorporating novel CO2-soluble non-ionic surfactants, Chemical Engineering Journal. doi.org/10.1016/j.cej.2025.166102. ##