Detection of Oil Spill Hotspots Using Time-Series MODIS Data (Case Study: Persian Gulf)

Document Type : Research Paper

Authors

College of Environment, Karaj, Iran

Abstract

Nowadays, oil spill to the seas and oceans is one of the most critical factors in the sea-based pollution in the world. On-time recognition and prevention of oil spills to the marine environment and decreasing of its harmful effects on sea ecosystems are necessary. Remote sensing technology is suitable for early recognition of oil pollution from the air because of the data-collecting in various ranges of Electromagnetism and a broad view of the region. In this study, after evaluation of the scientific sources and the comparison of various sensors and about the time and place of the oil pollution, the images of the second level of MODIS sensor, from 2005 to 2015, have been used. So that a new method for monitoring of the oil spill has been developed. Moreover, the suggested method has focused on enhancment of sensor data. In this study, in order to enhance the bands 1 or 2 oil spill of MODIS sensor, the mean long-term statistical parameters and standard deviation of time-series data have been applied. Therefore, the undesirable data sets for each pixel have been deleted through the initiative process. Then, the mean and the long-term standard deviation of the data have been acquired from the long-term data. Moreover, finally, the value of each pixel has been standardized by utilizing those parameters. The oil spill event has been simulated by this method. Afterward, the normal frequency distribution method was applied to screen the oil patches, and the polluted pixels have been screened by applying  the appropriate threshold. In this way, the oil pollution happened in 2007, and 2010 have been screened by the designed model, and their accuracy has been compared to the real land map. The results of the map for each oil spill event have been acquired as follows: 96% total accuracy and 0.95 Kapa co-efficient for August 2007, 95% total accuracy and 0.92 Kapa co-efficient for July 2010. Finally, the overall results of the study have shown that the designed model has enough accuracy in recognition and screening of oil spills events.
 

Keywords


[1]. Brekke C. and Solberg A. H., “Oil spill detection by satellite remote sensing,” Remote Sensing of Environment, Vol. 95, No. 1, pp. 1-13, 2005. ##
[2]. Pajot E., “Examples of SAR imagery applications to the petroleum industry,” 75th EAGE Conference & Exhibition incorporating SPE Europec, 2013. ##
[3]. Nirchio F., Sorgente M., Giancaspro A., Biamino W., Parisato E., Ravera R. and Trivero P., “Automatic detection of oil spills from SAR images,” International Journal of Remote Sensing, Vol. 26, No. 6, pp. 1157-1174, 2005. ##
[4]. Solberg A. H. S., “Remote sensing of ocean oil-spill pollution,” Proceedings of the IEEE, Vol. 100, No. 10, pp. 2931-2945, 2012. ##
[5]. Fingas M. F. and Brown C. E., “Review of oil spill remote sensing,” Marine Pollution Bulletin, Vol. 83, No. 4, pp. 9-23, 2014. ##
[6]. متکان ع. آ.، حاجب م. و آذرخش ز.،"بررسی کاربرد سنجش‌ازدور در آشکارسازی آلودگی‌های نفتی دریا"، علوم محیطی، دوره 12، شماره 1، صفحات 10-1، 1393.‎ ##
[7]. Leifer I., Lehr W. J., Simecek Beatty D., Bradley E., Clark R., Dennison P. and Reif M., “State of the art satellite and airborne marine oil spill remote sensing: application to the BP deepwater horizon oil spill”, Remote Sensing of Environment, Vol. 124, pp. 185-209, 2012. ##
[8]. ملکی نجف‌آبادی ‌س.، راهداری ‌و.،"پایش آلودگی‌های نفتی در دریا با استفاده از تکنیک سنجش‌ازدور (RS)"، همایش بین‌المللی HSE در صنعت نفت و گاز، شرکت پتروپارس (تهران)، 1388. ##
[9]. لطفی ‌ح.، بقایی‌ ح.، موسوی س. ر.، خیامباشی س.، "محیط زیست خلیج فارس و حفاظت از آن"، نگرش‌های نو در جغرافیای انسانی، سال 3، شماره 1، 1398. ##
[10]. گل مروی د. آ.، لگزایی ‌ف.، "بررسی میزان تجمع آلاینده‌های نفتی در رسوبات و سواحل خلیج فارس"، ششمین همایش علوم و فنون دریایی، تهران، مرکز علوم جوی و اقیانوسی، 1384. ##
[11]. Vermote E. F., Kotchenova S. Y. and Ray J. P., “MODIS surface reflectance user’s guide version 1.3,” MODIS Land Surface Reflectance Science Computing Facility, 2011. ##
[12]. Lacava T., Ciancia E., Coviello I., Di Polito C., Grimaldi C. S., Pergola N. and Tramutoli V., “A MODIS-based robust satellite technique (RST) for timely detection of oil spilled areas,” Remote Sensing, Vol. 2, No. 9, 128., 2017. ##
[13]. Cuomo V., Filizzola C., Pergola N., Pietrapertosa C. and Tramutoli V., “A self-sufficient approach for GERB
cloudy radiance detection,” Atmos. Res., Vol. 72, pp. 39–56, 2004. ##
[14]. Dubovyk O., Landmann T., Erasmus B. F., Tewes A. and Schellberg J., “Monitoring vegetation dynamics with medium resolution MODIS-EVI time series at sub-regional scale in southern Africa,” International Journal of Applied Earth Observation and Geoinformation, Vol. 38, pp. 175-183, 2015. ##
[15]. Eastman J., “TerrSet Tutorial,” Clark Labs., Clark University: Worcester, MA, United States, 2015. ##
 [16]. Rayegani B. and Kheirandish Z., “Utilization of time series of satellite data in order to validate the identified dust storm sources in Alborz province,” Journal of Spatial Analysis Environmental Hazarts, Vol. 4, No. 4, pp. 1-18, 2018. ##
[17]. Klingmüller K., Pozzer A., Metzger S., Stenchikov G. L. and Lelieveld J., “Aerosol optical depth trend over the Middle East,” Atmospheric Chemistry and Physics, Vol. 16, pp. 5063-5073, 2016. ##
[18]. Grimaldi C. S. L., Casciello D., Coviello I., Lacava T., Pergola N. and Tramutoli V., “An improved RST approach for timely alert and near real time monitoring of oil spill disasters by using AVHRR data,” Nat. Hazard. Earth Syst. Sci., Vol.11, pp.1281–1291, 2011. ##
[19]. MarshP., M. Woo k.., “Meltwater movement in natural heterogeneous snow covers”, Water Resour, Vol. 21, pp. 1710-1716, 1985. ##