Investigation of some porosity estimation methods using seismic data in one of the south iranian oil fields

Document Type : Research Paper

Authors

Faculty of Petroleum Engineering, Sahand University of Technology, Tabriz, Iran

Abstract

Porosity is one of the important parameters in reserve estimation and development of a hydrocarbon reservoir. This petrophysical parameter is traditionally calculated from core and log data. The use of seismic data to estimate petrophysical parameters between wells has been of particular interest in oil and gas industry. In this study, seismic inversion was performed using two methods including model based and sparse spike using a combination of well data and post stack seismic data in an Iranian oil fields. The correlation and error of the sparse spike inversion method were 98 and 19%, respectively. However, the correlation and error of the model-based inversion were 88 and 47%, respectively. In the next step, porosity estimation was performed using three methods, including seismic multiple-attribute, probabilistic neural network and radial basic function neural network. The probabilistic neural network method provided 91% correlation between training data and 71% correlation between validation data that was a better answer than the other two methods. Therefore, it is suggested to use this method to estimate the porosity of seismic data in fields with similar geology.
 

Keywords


[1]. Russell B (2004) The application of multivariate statistics and neural networks to the prediction of reservoir parameters using seismic attributes, Ph.D. Dissertation, University of Calgary, Alberta, 392.##
[2]. Das B, Chatterjee R (2016) Porosity mapping from inversion of post-stack seismic data, Georesursy, 18, 4: 306-313. ##
[3]. Hampson D P, Schuelke J S, Quirein J A (2001) Use of multi-attribute transforms to predict log properties from seismic data, Geophysics, 66, 1: 220-236. ##
[4]. Chopra S, Marfurt K J (2006) Seismic attributes- A promising aid for geologic prediction, CSEG Recorder, 31, 5: 110-120. ##
[5]. Taner M T (2001) Seismic attributes, CSEG Recorder, 26, 7: 49-56. ##
[6]. Brown A R (2001) Understanding seismic attributes, Geophysics, 66, 1: 47-48. ##
[7]. Leite E P, Vidal A C (2011) 3D Porosity predication from seismic inversion and neural networks, Computers and Geosciences, 37, 8: 1174-1180. ##
[8]. وکیلی آ.، خلیلی س. ط. حسینی س. ک. موسوی حرمی س. ر. و چهرازی ع. (1393) مقایسه نتایج حاصل از وارون‌سازی داده‌های لرزه‌ای دو بعدی میدان نفتی هندیجان و بهرگانسر به‌روش‌های مختلف، پژوهش نفت، 25، 82: 44-32. ##
[9]. قنبری ا.، و ریاحی م. ع. (1394) تخمین تخلخل مخزن با استفاده از شبکه با تابع پایه شعاعی دینامیکی (براساس نشان‌گر لرزه‌ای امپدانس صوتی)، اولین کنفرانس ملی ژئومکانیک نفت، مرکز همایش‌‌های بین‌المللی پژوهشگاه صنعت نفت، تهران، ایران. ##
[10]. Das B, Chatterjee R, Singha D K, Kumar R (2017) Post-stack seismic inversion and attribute analysis in shallow offshore of Krishna-Godavari basin, India, Journal of the Geological Society of India, 90, 1: 32-40. ##
[11]. Gogoi T, Chatterjee R (2019) Estimation of petrophysical parameters using seismic inversion and neural network modeling in Upper Assam basin, India, Geoscience Frontiers, 10, 3: 1113-1124. ##
[12]. Soleimani B, Bahadori A, Meng F (2013) Microbiostratigraphy, microfacies and sequence stratigraphy of upper cretaceous and paleogene sediments, Hendijan oilfield, Northwest of Persian Gulf, Iran, Natural Science, 5, 11: 1165-1176. ##
[13]. Hampson D P (2007) CGGVeritas hampson-russell software CE8 version references manuals, Hampson-Russell Software Services Ltd, Canada. ##
[14]. Yongzhong X U, Tongjun C, Shizhong1 C,  Weichuan H, Gang W (2010) Comparison between several seismic inversion methods and their application in mountainous coal fields of western China, Mining Science and Technology, 20, 4: 585-590. ##
[15]. Russell B (1988) Introduction to seismic inversion methods, SEG, Course Notes, Series 2. ##
[16]. Oldenburg D, Scheur T, Levy S (1983) Recovery of the acoustic impedance from reflection seismogram, Geophysics, 48, 10: 1318-1337. ##   
[17]. Aleman P B (2004) Acoustic Impedance Inversion of the Lower Permian Carbonate Buildups in the Permian Basin, Texas, Texas A & M University. ##
[18]. Viveros U I, Parra J (2014) Artificial Neural Networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well-log data, Journal of Applied Geophysics, 107: 45-54. ##
[19]. Quirein J, Hampson D P, Schuelke J (2000) Use of multi-attribute transforms to predict log properties from seismic data, in EAGE Conference on Exploring the Synergies between surface and Borehole Geoscience-Petro physics meets Geophysics, European Association of Geoscientists and Engineers. ##
[20]. Russell B, Hampson D P, Lines L R (2003) Application of the radial basis function neural network to the prediction of log properties from seismic attributes—A channel sand case study, in SEG Technical Program, Expanded Abstracts, Society of Exploration Geophysicists: 454-457. ##