[1]. Arent D J, Wise A, Gelman R (2011) The status and prospects of renewable energy for combating global warming, Energy Economics, 33, 4: 584-593. ##
[2]. Sawin J L (2017) Renewables, Global Status Report, 72, 1-302. ##
[3]. Goswami D. Y (2015). Principle of Solar Engineerng. 3rd edition, CRC Press, 1-153. ##
[4]. Denholm P, King J C, Kutcher C F, Wilson P P H (2012) Decarbonizing the electric sector: combining renewable and nuclear energy using thermal storage, Energy Policy, 44: 301–311. ##
[5]. Zhang Y, Campana P E, Lundblad A, Yan J, (2017) Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: Storage sizing and rule-based operation, Applied Energy, 201:397–411. ##
[6]. Klingler A L, Schuhmacher F (2018) Residential photovoltaic self-consumption: identifying representative household groups based on a cluster analysis of hourly smartmeter data, Energy Effic:1–13. ##
[7]. Akbari Y H, Browne M C, Ortega A, Huang M J, Hewitt N J, B Norton, McCormack S J (2018) Efficient energy storage technologies for photovoltaic systems, Solar Energy, 1–25. ##
[8]. Rascon O C, Resch M, Bühler J, Sumper A (2016) Techno-economic comparison of a schedule-based and a forecast-based control strategy for residential photovoltaic storage systems in Germany, Electrical Engineering. ##
[9]. Li G (2016) Sensible heat thermal storage energy and exergy performance evaluations, Renewable and Sustainable Energy Reviews, 53 :897–923. ##
[10]. Tao Y B, He Y L (2018) A review of phase change material and performance enhancement method for latent heat storage system, Renewable and Sustainable Energy Reviews, 93:245–259. ##
[11]. Yadav D, Banerjee R (2016) A review of solar thermochemical processes, Renewable and Sustainable Energy Reviews, 54 :497–532. ##
[12]. G Alva, L. Liu, X. Huang, G. Fang, (2017) Thermal energy storage materials and systems for solar energy applications, Renew. Sustain, Renewable and Sustainable Energy Reviews, 68:693–706. ##
[13]. Gautam A, Saini R P (2020) A review on technical, applications and economic aspect of packed bed solarthermal energy storage system, Journal of Energy Storage 27. ##
[14]. Alva G, Lin Y, Fang G (2018) An overview of thermal energy storage systems, Energy, 144: 341-378. ##
[15]. Heier J, Bales C, Martin V (2015) Combining thermal energy storage with buildings – A review, Renewable and Sustainable Energy Reviews, 42, 1305-1325. ##
[16]. Biçer A, Sarı A (2013) New kinds of energy-storing building composite PCMs for thermal energy storage, Energy conversion and management, 69: 148-156. ##
[17]. Sarı A (2016) Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials, Energy Conversion and Management, 117: 132-141. ##
[18]. Gumus M (2009) Reducing cold-start emission from internal combustion engines by means of thermal energy storage system, Applied Thermal Engineering, 29: 652–660. ##
[19]. Mondal S (2008) Phase change materials for smart textiles–An overview, Applied Thermal Engineering, 28, 11-12, 1536-1550. ##
[20]. Aguilar-Jiménez J A, Velázquez N, Acuña A, López-Zavala R, González-Uribe L A (2018) Effect of orientation of a CPC with concentric tube on efficiency, Applied Thermal Engineering, 130: 221-229. ##
[21]. Brosseau D, Kelton J W, Ray D, Edgar M, Chisman K, Emms B (2005) Testing of thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants, Journal of Solar and Energy Engineering, 127, 1: 109-116. ##
[22]. Singh H, Saini R P, Saini J S (2010) A review on packed bed solar energy storage systems, Renewable and Sustainable Energy Reviews, 14, 3: 1059-1069. ##
[23]. Wyttenbach J, Bougard J, Descy G, Skrylnyk O, Courbon E, Frère M, Bruyat Fabien M (2018) Performances and modelling of a circular moving bed thermochemical reactor for seasonal storage, Applied Energy 230: 803–815. ##
[24]. Kemp K, Griffiths J, Campbell S, Lovell K (2013) An exploration of the follow-up up needs of patients with inflammatory bowel disease, Journal of Crohn’s and Colitis, 7, 9: 386-395. ##
[25]. Zalba B, Marin B, Cabeza J, Mehling H (2003) Review on Phase changing materials to store energy, Applied Thermal Engineering, 23: 251-283. ##
[26]. Regin A F, Solanki S C, Saini J S (2008) Heat transfer characteristics of thermal energy storage system using PCM capsules: a review, Renewable and Sustainable Energy, 12 :2438–2458. ##
[27]. Cabeza L F, Castell A, Barreneche C, de Gracia A, A I Fernández (2011) Materials used as PCM in thermal energy storage in buildings: a review, Renewable and Sustainable Energy Reviews 15 :1675–1695. ##
28]. Beasley D, Clark J (1984) Transient response of a packed bed for thermal energy storage, International Journal of Heat and Mass Transfer, 27. ##
[29]. Izquierdo-Barrientos M A, Sobrino C, Almendros-Ibáñez J A (2015). Experimental heat transfer coefficients between a surface and fixed and fluidized beds with PCM. Applied Thermal Engineering, 78: 373-379. ##
[30]. Hnchen M, Brückner S, Steinfeld A (2011) High temperature thermal storage using a packed bed of rocks, heat transfer analysis and experimental validation, Applied Thermal Engineering, 31: 1798-1806. ##
[31]. Elsayed M, Megahed I, El-Refaee (1988) Experimental testing of fluidized bed thermal storage, Solar and Wind Technology, 5: 15–25. ##
[32]. Wagialla K, Fakeeha A, Elnashaire S, Almaktary A (1991) Modeling and simulation of energy storage in fluidized beds using the two-phase model, Energy Sour, 13 :189–201. ##
[33]. Khosravi Bizhaem H, and Basirat Tabrizi H (2017). Investigating effect of pulsed flow on hydrodynamics of gas-solid fluidized bed using two-fluid model simulation and experiment, Powder Technology, 311: 328-340. ##
[34]. Zhang D, and Koksal M (2006). Heat transfer in a pulsed bubbling fluidized bed. Powder Technology, 168, 1: 21-31. ##
[35]. Jia D, Bi X, Lim C J, Sokhansanj S, Tsutsumi A (2019) Heat transfer in a tapered fluidized bed of biomass particles with pulsed gas flow, Particuology, 42: 2-14. ##
[36]. Molerus O, Wirth K E (1997) Prediction of heat transfer in bubbling fluidized beds at Ar ≤ 108. In O. Molerus andK. E. Wirth (Eds.), Heat Transfer in Fluidized Beds, Dordrecht: Springer Netherlands, 55-68. ##
[37]. Asif M (2008). Bed Void Fraction at Minimum Fluidization Conditions for Limiting Cases, Joyrnal of Chemical Engeering of Japan, 41, 3: 161-164. ##
[38]. Izquierdo-Barrientos M A, Sobrino C, Almendros-Ibáñez J A (2013). Thermal energy storage in a fluidized bed of PCM. Chemical Engineering Journal, 230: 573-583. ##
[39]. Taylor J R (1997) An introduction to error analysis: The study of uncertainties in physical measurements, 2nd edition, Applied Energy, US, University Science Books, 1-780. ##
[40]. محمدی ف.، ستوده قرهباغ ر.، عزیزپور، ه.، ضرغامی ر.، مستوفی ن.، 1395. بررسی تغییرات هیدرودینامیک بسترسیال با مقایسه جاذب سیگنالهای ارتعاشی بستر به روش آماری دیکس، پژوهش نفت، 14-13. ##
[41]. گنجی باباخانی ا.، فاضلی ع.، خاکدامن ح.، مسعودی م.، 1388. بررسی اثر سرعت ظاهری گاز و غلظت جامد بر ضریب انتقال حرارت در ستونهای حبابی - دوغابی. پژوهش نفت، 46-52. ##
[42]. Wang Y, Ji L, Li B, Wang L, Bai Y, Chen H, Ding Y (2020) Investigation on the thermal energy storage characteristics in a spouted bed based on different nozzle numbersو Journal oF Energy Reports, 6, 7: 127-136. ##
[43]. Almendros-Ibáñez J A, Fernández-Torrijos M, Díaz-Heras M, Belmonte J F, Sobrino C (2020) A review of solar thermal energy storage in beds of particles: Packed and fluidized beds, Journal of Solar Energy, 192: 193-237. ##