Estimation of Total Organic Carbon Content and Kerogen Type from Well Log Data by Combining Artificial Neural Network and Metaheuristic Algorithms

Document Type : Research Paper

Authors

1 Department of Petroleum Geology and Sedimentary Basins, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Iran\Petroleum Geology and Geochemistry Research Center (PGGRC), Shahid Chamran University of Ahvaz, Iran

2 Department of Petroleum Geology and Sedimentary Basins, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Iran

3 Department of Geology, National Iranian South Oil Company (NISOC), Ahvaz, Iran

Abstract

Assessment of petroleum generation potential of the source rock as a function of total organic carbon content and kerogen type is of great importance in oil and gas exploration studies. The main aim of this research is to compare the performance of artificial neural networks trained by back propagation algorithm (ANN-BP) and metaheuristic methods including genetic algorithm (ANN-GA) and particle swarm optimization (ANN-PSO) for prediction of total organic carbon (TOC) content and remaining petroleum potential (S2) from the wireline data. For this purpose, Pabdeh Formation (Paleocene-Oligocene) in Mansuri oilfield is studied. Based on the results of linear regression on the test data, ANN-PSO method provides more accurate predictions of Rock-Eval derived TOC and S2 parameters with correlation coefficient (R2) values of 0.8548 and 0.9089, respectively. In addition, hydrogen index (HI) is appropriately predicted based on the relationship between TOC and S2 values obtained from the ANN-PSO method with R2 value of 0.6882, from which different types of kerogen can be distinguished with classification accuracy of 74 percent. Geochemical zonation of Pabdeh Formation based on organic richness and kerogen type reveals three distinctive parts, among which the middle part (Brown Shale Unit, BSU) demonstrates the greater petroleum generation potential with having the significant values of total organic carbon and hydrogen index. Therefore, the BSU can play an important role in hydrocarbon charging of the oilfield traps if it attains proper level of thermal maturity. Accordingly, precise determination of petroleum generation characteristics of Pabdeh Formation using the ANN-PSO model proposed in this study will lead to a reduction in uncertainty associated with petroleum system modeling, and therefore will considerably increase the exploration efficiency in the Mansuri oilfield.
 

Keywords


[1]. Meyer BL, Nederlof MH (1984) Identification of source rocks on wireline logs by density/resistivity and sonic transit time/resistivity crossplots, AAPG Bulletin, 68:121-129. ##
[2]. Passey QR, Creaney S, Kulla JB, Moretti FJ, Stroud JD (1990) A practical model for organic richness from porosity and resistivity logs, AAPG Bulletin, 74:1777-1794. ##
[3]. Huang Z, Williamson MA (1996) Artificial neural network modelling as an aid to source rock characterization, Marine and Petroleum Geology, 13:277-290. ##
[4]. Kamali MR, Mirshady AA (2004) Total organic carbon content determined from well logs using ΔLogR and Neuro Fuzzy techniques, Journal of Petroleum Science and Engineering, 45:141-148. ##
[5]. Alizadeh B, Najjari S, Kadkhodaie-Ilkhchi A (2012) Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data: A case study of the South Pars Gas Field, Persian Gulf, Iran, Computers and Geosciences, 45:261-269. ##
[6]. Siddig O, Ibrahim AF, Elkatatny S (2021) Application of various machine learning techniques in predicting total organic carbon from well logs, Computational Intelligence and Neuroscience, 2021:1-8. ##
[7]. Alizadeh B, Maroufi K, Heidarifard MH (2018) Estimating source rock parameters using wireline data: An example from Dezful Embayment, South West of Iran, Journal of Petroleum Science and Engineering, 167:857-868. ##
[8]. Asgari Nezhad Y, Moradzadeh A, Kamali MR (2018) A new approach to evaluate organic geochemistry parameters by geostatistics methods: A case study from Western Australia, Journal of Petroleum Science and Engineering, 169:813-824.
[9]. Dreyfus G (2005) Neural networks: Methodology and applications, Berlin: Springer. ##
[10]. Yu C C, Liu B D (2002) A backpropagation algorithm with adaptive learning rate and momentum coefficient, Proceedings of the 2002 International Joint Conference on Neural Networks, Honolulu, 1218-1223. ##
[11]. Gowda CC, Mayya SG (2014) Comparison of back propagation neural network and genetic algorithm neural network for stream flow prediction, Journal of Computational Environmental Sciences, 2014:1-6. ##
[12]. Katoch S, Chauhan SS, Kumar V (2021) A review on genetic algorithm: Past, present, and future, Multimedia Tools and Applications, 80:8091-8126. ##
[13]. Hosseini Z, Gharechelou S, Nakhaei M, Gharechelou S (2016). Optimal design of BP algorithm by ACOR model for groundwater-level forecasting: A case study on Shabestar plain, Iran, Arabian Journal of Geosciences, 9:436. ##
[14]. خامه‌چی ا، قاسمی م، کاشی م (1398) تخمین دقیق پارامترهای چاه‌آزمایی با استفاده از یک الگوریتم ترکیبی و مقایسه آن با یک نرم‌افزار رایج صنعتی، مجله پژوهش نفت، 29: 40-28. ##
[15]. Moazzeni A, Khamehchi E (2019) Drilling rate optimization by automatic lithology prediction using hybrid machine learning, Journal of Petroleum Science and Technology, 9:77-88. ##
[16]. Pakdel M, Behroozsarand A (2020) Using hybrid artificial neural network-particle swarm optimization for prediction of HIPS mechanical properties, Journal of Petroleum Science and Technology, 10:53-66. ##
[17]. Hosseini Z, Gharechelou S, Mahboubi A, Moussavi-Harami R, Kadkhodaie-Ilkhchi A, Zeinali M (2021) Shear wave velocity estimation utilizing statistical and multi-intelligent models from petrophysical data in a mixed carbonate-siliciclastic reservoir in Southwest of Iran, Iranian Journal of Oil and Gas Science and Technology, 10:15-39. ##
[18]. حسینی ز، محبوبی ا، کدخدائی ع (1396) آنالیز یک مدل‌سازی ترکیبی به‌منظور تعیین TOC در سنگ‌های منشأ میدان نفتی اهواز، مجله پژوهش نفت، 27: 59-48. ##
[19]. Kadkhodaie-Ilkhchi A, Rahimpour-Bonab H, Rezaee M (2009) A committee machine with intelligent systems for estimation of total organic carbon content from petrophysical data: An example from Kangan and Dalan reservoirs in South Pars Gas Field, Iran, Computers & Geosciences, 35:459-474. ##
[20]. Tabatabaei SME, Kadkhodaie-Ilkhchi A, Hosseini Z, Asghari Moghaddam A (2015) A hybrid stochastic-gradient optimization to estimating total organic carbon from petrophysical data: A case study from the Ahwaz oilfield, SW Iran, Journal of Petroleum Science and Engineering, 127:35-43. ##
[21]. Wang P, Peng S, He T (2018) A novel approach to total organic carbon content prediction in shale gas reservoirs with well logs data, Tonghua Basin, China, Journal of Natural Gas Science and Engineering, 55:1-15. ##
[22]. Bordenave M L, Hegre J A (2010) Current distribution of oil and gas fields in the Zagros Fold Belt of Iran and contiguous offshore as the result of the petroleum systems, In: Leturmy P, Robin C, eds. Tectonic and Stratigraphic Evolution of Zagros and Makran during the Mesozoic-Cenozoic, London: Geological Society of London, Special Publications, 291-353. ##
[23]. Sherkati S, Letouzey J (2004) Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment), Iran, Marine and Petroleum Geology, 21:535-554. ##
[24]. Sepehr M, Cosgrove JW (2004) Structural framework of the Zagros Fold-Thrust Belt, Iran, Marine and Petroleum Geology, 21:829-843. ##
[25]. مرادی م، موسوی حرمی س ر، صادقی ق (1394) تهیه مدل ژئواستاتیک مخزن آسماری میدان نفتی منصوری با استفاده از نرم‌افزار RMS، مجله پژوهش نفت، 25: 173-185. ##
[26]. آقانباتی س ع (1383) زمین‌شناسی ایران، انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور، تهران. ##
[27]. Espitalié J, Laporte JL, Madec M, Marquis F, Leplat P, Paulet J, Boutefeu A (1997) Méthode rapide de caractérisation des roches mètres, de leur potentiel pétrolier et de leur degré d›évolution, Revue de l’Institut Français du Pétrole, 32:23-42. ##
[28]. Baudin F, Disnar J, Aboussou A, Savignac F (2015) Guidelines for Rock-Eval analysis of recent marine sediments, Organic Geochemistry, 86:71-80. ##
[29]. Lafargue E, Marquis F, Pillot D (1998) Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies, Revue de l’Institut Français du Pétrole, 53:421-437. ##
[30]. Alizadeh B, Seyedali SR, Sarafdokht H (2019) Effect of bitumen and migrated oil on hydrocarbon generation kinetic parameters derived from Rock-Eval pyrolysis, Petroleum Science and Technology, 37:2114-2121. ##
[31]. Walczak S, Cerpa N (2003) Artificial neural networks, In: Meyers RA, ed. Encyclopedia of Physical Science and Technology, 3rd ed., New York: Academic Press, 631-645. ##
[32]. McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysics, 5:115-133. ##
[33]. Graupe D (2013) Principles of artificial neural networks, 3rd ed., Singapore: World Scientific. ##
[34]. Sairamya NJ, Susmitha L, George ST, Subathra MSP (2019) Hybrid approach for classification of electroencephalographic signals using time-frequency images with wavelets and texture features, In: Hemanth DJ, Gupta D, Balas VE, eds. Intelligent data analysis for biomedical applications: Challenges and solutions, Academic Press, 253-273. ##
[35]. Holland JH (1975) Adaptation in natural and artificial systems, Ann Arbor: The University of Michigan Press. ##
[36]. Sivanandam SN, Deepa SN (2008) Introduction to genetic algorithms, Berlin: Springer-Verlag. ##
[37]. Kennedy J, Eberhart R (1995) Particle swarm optimization, Proceedings of IEEE international conference on neural networks, Perth, Australia, 1942-1948. ##
[38]. Upendar J, Gupta CP, Singh GK, Ramakrishna G (2010) PSO and ANN-based fault classification for protective relaying, IET Generation, Transmission and Distribution, 4:1197-1212. ##
[39]. Jain NK, Nangia U, Jain J (2018) A review of particle swarm optimization, Journal of The Institution of Engineers (India): Series B, 99:407-411. ##
[40]. Chan FTS, Tiwari MK (2007) Swarm intelligence: Focus on ant and particle swarm optimization, Vienna: I-Tech Education and Publishing. ##
[41]. de Almeida BSG, Leite VC (2019) Particle swarm optimization: A powerful technique for solving engineering problems, In: Del Ser J, Villar E, Osaba E, eds. Swarm intelligence: Recent advances, new perspectives and applications, London: IntechOpen, 31-52. ##
[42]. Semero YK, Zhang J, Zheng D (2018) PV power forecasting using an integrated GA-PSO-ANFIS approach and Gaussian process regression-based feature selection strategy, CSEE Journal of Power and Energy Systems, 4:210-218. ##
[43]. Chau KW (2007) Application of a PSO-based neural network in analysis of outcomes of construction claims, Automation in Construction, 16:642-646. ##
[44]. Nadi A, Tayarani-Bathaie SS, Safabakhsh R (2009) Evolution of neural network architecture and weights using mutation based genetic algorithm, Proceedings of the 14th International CSI Computer Conference, Tehran, Iran, 536-540. ##
[45]. جنت‌مکان ن. (1390) انطباق داده‌های ژئوشیمیایی آلی با چینه‌نگاری سکانسی جهت ارزیابی پتانسیل هیدروکربوری سازند پابده در میدان نفتی منصوری، پایان‌نامه کارشناسی ارشد، دانشگاه شهید چمران اهواز. ##
[46]. Peters KE, Cassa MR (1994) Applied source rock geochemistry, In: Magoon LB, Dow WG, eds. The petroleum system - From source to trap, Tulsa: American Association of Petroleum Geologists. ##
[47]. Langford FF, Blanc-Valleron MM (1990) Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon, AAPG Bulletin, 74:799-804. ##
[48]. McCarthy K, Rojas K, Niemann M, Palmowski D, Peters K, Stankiewicz A (2011) Basic petroleum geochemistry for source rock evaluation, Oilfield Review, 23:32-43. ##
[49]. Alizadeh B, Opera A, Kalani M, Alipour M (2020) Source rock and shale oil potential of the Pabdeh Formation (Middle-Late Eocene) in the Dezful Embayment, southwest Iran, Geologica Acta, 18:1-22. ##