Investigation of the Performance and Stability of Ni-Co/Al2O3-ZrO2 Nanocatalysts with Micro Channel Reactor in Dry Reforming of Methane

Document Type : Research Paper

Authors

1 Department of Chemical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran

2 Catalyst Research Center, Faculty of Chemical and Petroleum Engineering, Razi University, Kermanshah, Iran

3 Nanotechnology Research Center, Downstream Development Technologies Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran

Abstract

In this study, the catalytic performance of thin layers of Ni-Co/Al2O3-ZrO2 was explored using the dry reforming of methane (DRM) in a microchannel reactor. Physical vapor deposition (PVD) was used for preparing the nanostructures. To this end, first, thin layers of Al2O3-ZrO2 were sputtered on stainless steel plates to form catalyst supports. Then, the combination of Co and Ni were coated on the catalytic support during different deposition times (2, 3, and 4 min) with Co/Ni weight percentages of 2.5%, 5%, and 7.5%. Box-Behnken design was used for the reactor tests, which were performed under certain conditions (i.e., temperature: 700, 750, and 800 ˚C; pressure: 1 atm; and feed flow rate: 10 ml/min) to assess the impact of various parameters (including deposition time, Co/Ni weight percentage, and reaction temperature) on catalytic activity and stability. The results showed that the highest level of activity and stability was registered at the deposition time of 4 min, the Co/Ni weight percentage of 5%, and the reaction temperature of 800 ˚C.
 

Keywords


[1]. Li K, Wang H, Wei Y, Yan D (2011) Transformation of methane into synthesis gas using the redox property of Ce–Fe mixed oxides: effect of calcination temperature, International Journal of Hydrogen Energy, 36, 5: 3471-3482, doi.org/10.1016/j.ijhydene.2010.12.038. ##
[2]. Estifaee P, Haghighi M, Babaluo A A, Rahemi N, Jafari M F (2014) The beneficial use of non-thermal plasma in synthesis of Ni/Al2O3–MgO nanocatalyst used in hydrogen production from reforming of CH4/CO2 greenhouse gases, Journal of Power Sources, 257: 364-373, doi.org/10.1016/j.jpowsour.2014.01.128. ##
[3]. Ma J, Sun N, Zhang X, Zhao N, Xiao F, Wei W, Sun Y (2009) A short review of catalysis for CO2 conversion, Catalysis Today, 148, 3-4: 221-231, doi.org/10.1016/j.cattod.2009.08.015. ##
[4]. Rostrup-Nielsen J R (2000) New aspects of syngas production and use, Catalysis Today, 63, 2-4: 159-164, doi.org/10.1016/S0920-5861(00)00455-7. ##
[5]. York A P, Xiao T, Green M L (2003) Brief overview of the partial oxidation of methane to synthesis gas, Topics in Catalysis, 22: 345-358. ##
[6]. Patel S, Kundu S, Halder P, Marzbali M H, Chiang K, Surapaneni A, Shah K (2020) Production of hydrogen by catalytic methane decomposition using biochar and activated char produced from biosolids pyrolysis, International Journal of Hydrogen Energy, 45, 55: 29978-29992, doi.org/10.1016/j.ijhydene.2020.08.036. ##
[7]. Hou Z, Chen P, Fang H, Zheng X, Yashima T (2006) Production of synthesis gas via methane reforming with CO2 on noble metals and small amount of noble-(Rh-) promoted Ni catalysts, International Journal of Hydrogen Energy, 31, 5: 555-561, doi.org/10.1016/j.ijhydene.2005.06.010. ##
[8]. Zhang L, Zhang Q, Liu Y, Zhang Y (2016) Dry reforming of methane over Ni/MgO-Al2O3 catalysts prepared by two-step hydrothermal method, Applied Surface Science, 389: 25-33, doi.org/10.1016/j.apsusc.2016.07.063. ##
[9]. Pechimuthu N A, Pant K K, Dhingra S C (2007) Deactivation studies over Ni− K/CeO2− Al2O3 catalyst for dry reforming of methane, Industrial and Engineering Chemistry Research, 46, 6: 1731-1736, doi.org/10.1021/ie061389n. ##
[10]. Bychkov V Y, Tyulenin Y P, Firsova A A, Shafranovsky E A, Gorenberg A Y, Korchak V N (2013) Carbonization of nickel catalysts and its effect on methane dry reforming, Applied Catalysis A: General, 453: 71-79. ##
[11]. Rahemi N, Haghighi M, Akbar Babaluo A, Fallah Jafari M, Khorram S (2013) Conversion of CH4/CO2 to syngas over Ni-Co/Al2O3-ZrO2 nanocatalyst synthesized via plasma assisted co-impregnation method: Surface properties and catalytic performance, Journal of Applied Physics, 114, 9: 094301, doi.org/10.1063/1.4816462. ##
[12]. Rahmani F, Haghighi M, Vafaeian Y, Estifaee P (2014) Hydrogen production via CO2 reforming of methane over ZrO2-Doped Ni/ZSM-5 nanostructured catalyst prepared by ultrasound assisted sequential impregnation method, Journal of Power Sources, 272: 816-827, doi.org/10.1016/j.jpowsour.2014.08.123. ##
[13]. Martınez R, Romero E, Guimon C, Bilbao R (2004) CO2 reforming of methane over coprecipitated Ni–Al catalysts modified with lanthanum, Applied Catalysis A: General, 274, 1-2: 139-149, doi.org/10.1016/j.apcata.2004.06.017. ##
[14]. Jabbour K, Massiani P, Davidson A, Casale S, El Hassan N (2017) Ordered mesoporous “one-pot” synthesized Ni-Mg (Ca)-Al2O3 as effective and remarkably stable catalysts for combined steam and dry reforming of methane (CSDRM), Applied Catalysis B: Environmental, 201: 527-542, doi.org/10.1016/j.apcatb.2016.08.009. ##
[15]. Li D, Li R, Lu M, Lin X, Zhan Y, Jiang L (2017) Carbon dioxide reforming of methane over Ru catalysts supported on Mg-Al oxides: A highly dispersed and stable Ru/Mg (Al) O catalyst, Applied Catalysis B: Environmental, 200: 566-577, doi.org/10.1016/j.apcatb.2016.07.050. ##
[16]. Sajjadi S M, Haghighi M, Rahmani F (2014) Dry reforming of greenhouse gases CH4/CO2 over MgO-promoted Ni–Co/Al2O3–ZrO2 nanocatalyst: effect of MgO addition via sol–gel method on catalytic properties and hydrogen yield, Journal of Sol-gel Science and Technology, 70: 111-124. ##
[17]. Song J H, Han S J, Yoo J, Park S, Kim D H, Song I K (2016) Effect of Sr content on hydrogen production by steam reforming of ethanol over Ni-Sr/Al2O3-ZrO2 xerogel catalysts, Journal of Molecular Catalysis A: Chemical, 418: 68-77, doi.org/10.1016/j.molcata.2016.03.035. ##
[18]. Singha R K, Shukla A, Yadav A, Adak S, Iqbal Z, Siddiqui N, Bal R (2016) Energy efficient methane tri-reforming for synthesis gas production over highly coke resistant nanocrystalline Ni–ZrO2 catalyst, Applied Energy, 178: 110-125, doi.org/10.1016/j.apenergy.2016.06.043. ##
[19]. Rezaei M, Alavi S M, Sahebdelfar S, Bai P, Liu X, Yan Z F (2008) CO2 reforming of CH4 over nanocrystalline zirconia-supported nickel catalysts, Applied Catalysis B: Environmental, 77, 3-4: 346-354, doi.org/10.1016/j.apcatb.2007.08.004. ##
[20]. San-José-Alonso D, Juan-Juan J, Illán-Gómez M J, Román-Martínez M C, Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane, Applied Catalysis A:General, 371, 54-59, doi.org/10.1016/j.apcata.2009.09.026. ##
[21]. Zhang J, Wang H, Dalai A K (2007) Development of stable bimetallic catalysts for carbon dioxide reforming of methane, Journal of Catalysis, 249, 2: 300-310, doi.org/10.1016/j.jcat.2007.05.004. ##
[22]. Therdthianwong S, Siangchin C, Therdthianwong A (2008) Improvement of coke resistance of Ni/Al2O3 catalyst in CH4/CO2reforming by ZrO2 addition, Fuel Processing Technology, 89, 160–168, doi.org/10.1016/j.Fuproc.2007.09.003. ##
[23]. Rahemi N, Haghighi M, Babaluo A A, Fallah Jafari M, Estifaee P (2013) Synthesis and physicochemical characterizations of Ni/Al2O3-ZrO2 nanocatalyst prepared via impregnation method and treated with non-thermal plasma for CO2 reforming of CH4, Journal of Industrial and Engineering Chemistry, 19: 1566-1576, doi.org/10.1016/j.jiec.2013.01.024. ##
[24]. Hou T, Zhang S, Xu T, Cai W (2014) Hydrogen production from oxidative steam reforming of ethanol over Ir/CeO2 catalysts in a micro-channel reactor, Chemical Engineering Journal, 255: 149-155, doi.org/10.1016/j.cej.2014.06.046. ##
[25]. Kumar V, Paraschivoiu M, Nigam K D P (2011) Single-phase fluid flow and mixing in microchannels, Chemical Engineering Science, 66, 7: 1329-1373, doi.org/10.1016/j.ces.2010.08.016. ##
[26]. Mahan J E (2000) Physical vapor deposition of thin films, 336. ##
[27]. Rezaei R, Moradi G (2018) Study of the performance of dry methane reforming in a microchannel reactor using sputtered Ni/Al2O3 coating on stainless steel, International Journal of Hydrogen Energy, 43, 46: 21374-21385, doi.org/10.1016/j.ijhydene.2018.09.200. ##
[28]. Mahboob S, Haghighi M, Rahmani F (2017) Sonochemically preparation and characterization of bimetallic Ni-Co/Al2O3-ZrO2 nanocatalyst: Effects of ultrasound irradiation time and power on catalytic properties and activity in dry reforming of CH4, Ultrasonics Sonochemistry, 38: 38-49, doi.org/10.1016/j.ultsonch.2017.02.039. ##
[29]. شریفی م، حقیقی م، علیزاده اسلامی ع، رحمانی ف، راحمی ن. (1394) سنتز و تعیین خصوصیات نانوکاتالیست با استفاده از روش‌های Ni-Cu/Al2O3-ZrO2 تلقیح متوالی و سل- ژل جهت استفاده در تبدیل متان و دی اکسیدکربن به گاز سنتز، مجله پژوهش نفت، دوره 25 شماره: 85-1، صفحات 157-142، dor 20.1001.1.23452900.1394.25.185.11.5. ##
[30]. Forutan H R, Karimi E, Hafizi A, Rahimpour M R, Keshavarz P (2015) Expert representation chemical looping reforming: A comparative study of Fe, Mn, Co and Cu as oxygen carriers supported on Al2O3, Journal of Industrial and Engineering Chemistry, 21: 900-911, doi.org/10.1016/j.jiec.2014.04.031. ##
[31]. Nataj S M M, Alavi S M, Mazloom G (2018) Modeling and optimization of methane dry reforming over Ni–Cu/Al2O3 catalyst using Box–Behnken design, Journal of Energy Chemistry, 27, 5: 1475-1488, doi.org/10.1016/j.jechem.2017.10.002. ##
[32]. Nikoo M K, Amin N A S (2011) Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation, Fuel Processing Technology, 92, 3: 678-691, doi.org/10.1016/j.fuproc.2010.11.027. ##
[33] Chen Q, Zhang J, Pan B, Kong W, Chen Y, Zhang, W, Sun Y (2017) Temperature-dependent anti-coking behaviors of highly stable Ni-CaO-ZrO2 nanocomposite catalysts for CO2 reforming of methane, Chemical Engineering Journal, 320: 63-73, doi.org/10.1016/j.cej.2017.03.029. ##
[34]. Zhang J, Wang H, Dalai A K (2008) Effects of metal content on activity and stability of Ni-Co bimetallic catalysts for CO2 reforming of CH4, Applied Catalysis A: General, 339: 121-129, doi.org/10.1016/j.apcata.2008.01.027. ##
[35]. Rad S J H, Haghighi M, Eslami A A, Rahmani F, Rahemi N (2016) Sol–gel vs. impregnation preparation of MgO and CeO2 doped Ni/Al2O3 nanocatalysts used in dry reforming of methane: Effect of process conditions, synthesis method and support composition, International Journal of Hydrogen Energy, 41, 11: 5335-5350, doi.org/10.1016/j.ijhydene.2016.02.002. ##
[36]. Sharifi M, Haghighi M, Rahmani F, Karimipour S (2014) Syngas production via dry reforming of CH4 over Co-and Cu-promoted Ni/Al2O3–ZrO2 nanocatalysts synthesized via sequential impregnation and sol–gel methods, Journal of Natural Gas Science and Engineering, 21: 993-1004, doi.org/10.1016/j.jngse.2014.10.030. ##
[37]. Al-Fatesh A S, Abu-Dahrieh J K, Atia H, Armbruster U, Ibrahim A A, Khan W U, Fakeeha A H (2019) Effect of pre-treatment and calcination temperature on Al2O3-ZrO2 supported Ni-Co catalysts for dry reforming of methane, International Journal of Hydrogen Energy, 44, 39: 21546-21558, doi.org/10.1016/j.ijhydene.2019.06.085. ##