Effect of Cationic Chain Length Part of Ionic Liquid based on the Imidazolium on the Spreading Coefficient of Crude Oil on Dolomitic Rock Surface in the Presence of Sulfate and Chloride Ions

Document Type : Research Paper

Authors

Enhanced Oil Recovery (EOR) and Gas Processing Research Lab., Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran

Abstract

Surfactant flooding is one of the most effective methods of the enhanced oil recovery (EOR) technique since it can reduce the interfacial tension (IFT) and wettability of the crude oil oil/rock/formation brine system. The aim of this study is to investigate the effect of ions (NaCl and Na2SO4) on the efficiency of two ionic liquids (ILs) namely 1-dodecyl-3-methyl imidazolium chloride ([C12mim][C])) and 1-octadecyl-3-methyl imidazolium chloride ([C18mim][Cl]) with different alkyl chain lengths on the IFT reduction and wettability alteration using works of adhesion and cohesion and spreading coefficient. Based on the critical micelle concentration (CMC) measurement, the efficiency of ILs at three different concentrations (C), C<CMC, C=CMC, and C=CMC, are investigated to evaluate the wettability alteration on the dolomitic carbonate rock surface and oil spreading coefficient. The results show that the performance of IL with longer chain length depends on the salt type, although the importance of surfactant concentration is dominant compared with salt type effect. To sum up, it seems that the IFT reduction can improve the performance of the solution for wettability alteration. The worth mentioning point is that the highest spreading coefficient is obtained for the IL with shorter chain length ([C12mim] [Cl]) in the presence of NaCl salt.

Keywords


[1]. Zante G, Boltoeva M, Masmoudi A, Barillon R, Trébouet D (2021) Supported ionic liquid and polymer inclusion membranes for metal separation. Separation & Purification Reviews, 51.1:100-116. ##
[2]. احمدی ص، وفایی سفتی م، بهرامیان ع، رستگار س ا، جراحیان خ (1394) بهینه‌سازی و مدل‌سازی زاویه تماس با استفاده از روش سطح پاسخ در فرآیند تغییر ترشوندگی سنگ کربناته توسط آب هوشمند، پژوهش نفت، 25، 83: 159-170. ##
[3]. منتظری م، شهرآبادی ع، نورعلیشاهی ع، موسویان م ع، حلاج ثانی ا (1397) بررسی پدیده تغییر ترشوندگی در فرآیند تزریق آب هوشمند به مخازن کربناته با استفاده از آزمایش پتانسیل زتا و زاویه تماس، پژوهش نفت، 28، 4-97: 29-39. ##
[4]. محمدی م، ریاحی س (1398) بررسی عملکرد و سازگاری نمونه آب‌های هوشمند حاوی بازدارنده‌های رسوب در مخازن کربناته، پژوهش نفت، 29، 6-98: 4-23. ##
[5]. Lashkarbolooki M. Ayatollahi S (2018) Investigation of ionic liquids based on pyridinium and imidazolium as interfacial tension reducer of crude Oil− Water and their synergism with MgCl2. Journal of Petroleum Science and Engineering. 171: 411:424, DOI: 10.1016/j.petrol.2018.07.062. ##
[6]. Hezave AZ. Dorostkar S. Ayatollahi S. Nabipour M. Hemmateenejad B (2013) Effect of different families (imidazolium and pyridinium) of ionic liquids-based surfactants on interfacial tension of water/crude oil system. Fluid Phase Equilibria. 360: 139-145, DOI: 10.1016/j.fluid.2013.09.025. ##
[7]. Manshad AK Rezaei M Moradi S Nowrouzi I Mohammadi AH (2017) Wettability alteration and interfacial tension (IFT) reduction in enhanced oil recovery (EOR) process by ionic liquid flooding. Journal of Molecular Liquids. 248: 153-162, DOI: 10.1016/j.molliq.2017.10.009. ##
[8]. Barari M. Lashkarbolooki M. Abedini R (2021) Interfacial properties of crude oil/imidazolium based ionic liquids in the presence of NaCl and Na2SO4 during EOR process. Journal of Molecular Liquids. 327: 114845, DOI: 10.1016/j.molliq.2020.114845. ##
[9]. Hiorth A, Cathles LM, Madland MV (2010) The impact of pore water chemistry on carbonate surface chargeand oil wettability. Transport in Porous Media. 85.1: 1-21, DOI:10.1007/s11242-010-9543-6. ##
[10]. Standnes DC (2001) Enhanced Oil Recovery from Oil-Wet Carbonate Rock by Spontaneous Imbibition of Aqueous Surfactant Solutions, Doctoral Thesis, Norwegian University of Science and Technology. ##
[11]. Tie H (2006), Oil recovery by spontaneous imbibition and viscous displacement from mixed-wet carbonates. University of Wyoming. ##
[12]. Nair R (2014) Smart water for eor by membranes (Master›s thesis), University of Stavanger, Norway. ##
[13]. Anderson WG (1986) Wettability literature survey-part 1: rock/oil/brine interactions and the effects of core handling on wettability. Journal of Petroleum Technology. 38(10): 1125-1144. ##
[14]. Tan Y. Guo M (2013) Using surface free energy method to study the cohesion and adhesion of asphalt mastic. Construction and Building Materials. 47: 254-260. ##
[15]. Lamperti R. Grenfell J. Sangiorgi C. Lantieri C. Airey GD (2015) Influence of waxes on adhesion properties of bituminous binders. Construction and Building Materials. 76: 404-412. ##
[16]. Kakar MR. Hamzah MO. Akhtar MN. Woodward D (2016) Surface free energy and moisture susceptibility evaluation of asphalt binders modified with surfactant-based chemical additive. Journal of Cleaner Production. 112: 2342-2353. ##
[17]. Chatzis I. Ayatollahi S (1993) The effect of gas injection rate on the recovery of waterflood residual oil under gravity assisted inert gas injection, Technical Meeting/Petroleum Conference of The South Saskatchewan Section, Petroleum Society of Canada. ##
[18]. Sakthivel S. Velusamy S. Nair VC. Sharma T. Sangwai JS (2017) Interfacial tension of crude oil-water system with imidazolium and lactam-based ionic liquids and their evaluation for enhanced oil recovery under high saline environment. Fuel. ##191: 239-250.
[19]. Zeinolabedini Hezave A. Dorostkar S. Ayatollahi S. Nabipour M. Hemmateenejad B (2014) Mechanistic investigation on dynamic interfacial tension between crude oil and ionic liquid using mass transfer concept. Journal of Dispersion Science and Technology. 35.10: 1483-1491. ##
[20]. Fathi SJ. Austad T. Strand S. (2010) “Smart water” as a wettability modifier in chalk: the effect of salinity and ionic composition. Energy and Fuels, 24.4: 2514-2519. ##