Comparing the Performance of Calcium-based Adsorbents Prepared from Limestone and Eggshell Resources in CO2 Capture Calcium Looping Process and Improving their Efficiency

Document Type : Research Paper

Authors

1 Faculty of Chemical & Petroleum Engineering, University of Tabriz, Iran

2 Instituto de Ciencia de Materiales de Sevilla, C. S. I. C.-Universidad de Sevilla, C. Américo Vespucio, Sevilla, Spain

Abstract

dioxide has been considered by the process of cyclic surface adsorption using calcium-based adsorbents. Despite a proper performance, the reduction of adsorption capacity due to the sintering of Ca-based adsorbents with increasing number of cycles is still a big challenge. In this study, the performance of two Ca-based adsorbents prepared from lime ore (limestone) and eggshell sources in terms of adsorption capacity during 20 consecutive carbonation and calcination cycles was investigated. Then, in order to overcome the sintering problem, both limestone and eggshell adsorbents were treated with acetic acid at a concentration of 10% by volume. The results showed that the presence of acetic acid in both types of adsorbents led to an increase in the effective conversion at the end of 20th cycle, so that the values of 0.38 and 0.33 were obtained for limestone and eggshell with 10% v/v acetic acid, respectively, which was comparable to the corresponding values for raw limestone and eggshell (in the absence of acetic acid), that is 0.24 and 0.20. The reason for the increase in the conversion by treating with acetic acid can be attributed to the formation of calcium acetate, which has led to the formation of more porous and stable structures. By comparing the two calcium sources used in this study, it was found that limestone has a better performance than eggshell in terms of CO2 adsorption capacity, so that the conversion rate of raw limestone was 1.2 times higher than raw eggshell, which could be related to its high purity as well as its larger crystal size compared to eggshell.

Keywords


[1]. Nobarzad, M. J., Tahmasebpoor, M., Imani, M., Pevida, C., & Heris, S. Z. (2021). Improved CO2 adsorption capacity and fluidization behavior of silica-coated amine-functionalized multi-walled carbon nanotubes, Journal of Environmental Chemical Engineering 9: 105786, doi.org/10.1016/j.jece.2021.105786. ##
[2]. Oschatz, M., Antonietti, M. (2018). A search for selectivity to enable CO2 capture with porous adsorbents, Energy and Environmental Science, 11: 57-70, doi: 10.1039/C7EE02110K. ##
[3]. Erans, M., Manovic, V., & Anthony, E. J. (2016), Calcium looping sorbents for CO2 capture, Applied Energy 180: 722-742, doi.org/10.1016/j.apenergy.2016.07.074. ##
[4]. Heidari, M., Tahmasebpoor, M., Mousavi, S. B., & Pevida, C. (2021). CO2 capture activity of a novel CaO adsorbent Stabilized with (ZrO2+Al2O3+CeO2)-Based Additive under mild and realistic calcium looping conditions, Journal of CO2 Utilization 53, 101747, doi.org/10.1016/j.jcou.2021.101747. ##
[5]. Valverde, J. M., Jimenez, P. E. S., & Perez-Maqueda, L. A. (2014). High and stable CO2 capture capacity of natural limestone at Ca-looping conditions by heat pretreatment and recarbonation synergy, Fuel, 123: 79-85, doi.org/10.1016/j.fuel.2014.01.045. ##
] 6[. مالکی، ن.، مطهری، ک. (1398) عملکرد جذب دی اکسید کربن در محلول پی زایلیلن دی آمین: اندازه‎گیری آزمایشگاهی و مدل‎سازی با استفاده از تئوری پاسخ سطح، پژوهش نفت، 29(104): 145-135. ##
[7]. Nobarzad, M. J., Tahmasebpour, M., Heidari, M., & Pevida, C. (2022). Theoretical and experimental study on the fluidity performance of hard-to-fluidize carbon nanotubes-based CO2 capture sorbents, Frontiers of Chemical Science and Engineering, 1-16. ##
[8]. Nie, L., Mu, Y., Jin, J., Chen, J., & Mi, J. (2018). Recent developments and consideration issues in solid adsorbents for CO2 capture from flue gas, Chinese Journal of Chemical Engineering, 26, 2303-2317, doi.org/10.1016/j.cjche.2018.07.012. ##
[9]. Troya, J. J. A., Jimenez, P. E. S., Perejón, A., Valverde, J. M., Chacartegui, R., Maqueda, L. A. P. (2020). Calcium-looping performance of biomineralized CaCO3 for CO2, Capture and Thermochemical Energy Storage, Industrial and Engineering Chemistry Research, 59: 12924-12933, doi.org/10.1021/acs.iecr.9b05997. ##
[10]. Ives, M., Mundy, R. C., Fennell, P. S., Davidson, J. F., Dennis, J. S., & Hayhurst, A. N. (2008). Comparison of different natural sorbents for removing CO2 from combustion gases, as studied in a bench-scale fluidized bed, Energy Fuels, 22: 3852-3857, doi.org/10.1021/ef800417v. ##
[11]. Azimi, B., Tahmasebpoor, M., Jimenez, P. E. S., Perejon, A., & Valverde, J. M. (2019). Multicycle CO2 capture activity and fluidizability of Al-based synthesized CaO sorbents, Chemical engineering journal, 358: 679-690, doi.org/10.1016/j.cej.2018.10.061. ##
[12]. Zhang, Y., Liu, W., Yang, X., Sun, J., Hu, Y., & Xu, M. (2016). Incorporation of CaO in inert solid matrix by spray drying sol mixture of precursors, RSC Advances 6: 57658–57666, doi.org/10.1039/C6RA10958F. ##
[13]. Grasa, G., Murillo, R., Alonso, M., & Abanades, J. C. (2009). Application of the random pore model to the carbonation cyclic reaction, AIChE 55, 1246–55, doi.org/10.1002/aic.11746. ##
[14]. Imani, M., Tahmasebpoor, M., Jiménez, P. E. S., Valverde, J. M., & Moreno, V. (2022). A novel, green, cost-effective and fluidizable SiO2-decorated calcium-based adsorbent recovered from eggshell waste for the CO2 capture process, Separation and Purification Technology, 35, 122523, doi.org/10.1016/j.seppur.2022.122523. ##
[15]. Hughes, R. W., Lu, D,. Anthony, E. J., & Wu, Y. (2004). Improved long-term conversion of limestone-derived sorbents for in situ capture of CO2 in a fluidized bed combustor, Industerial and Enginerring Chemistry Research, 43, 5529-5539, doi.org/10.1021/ie034260b. ##
[16]. Manovic, V., Anthony, E. J. (2008). Thermal activation of CaO-Based Sorbent and Self-Reactivation during CO2 Capture Looping Cycles, Environmental Science and Technology, 42: 4170–4174, doi.org/10.1021/es800152s. ##
[17]. Stendardo, S., Foscolo, P. U. (2009). Carbon dioxide capture with dolomite: a model for gas-solid reaction within the grains of a particulate sorbent, Chemical Engineering Science, 64, 2343–2352, doi.org/10.1016/j.ces.2009.02.009. ##
[18]. Koirala, R., Reddy, G., Lee, J. Y., & Smirniotis, P. G. (2014). Influence of foreign metaldopants on the durability and performance of Zr/Ca sorbents during high temperature CO2 Capture, Seperation Science Technology, 49: 47–54, doi.org/10.1080/01496395.2013.836672. ##
[19]. Li, Y., Zhao, C., Chen, H., Duan, L., Chen, X. (2010). Cyclic CO2 capture Behavior of KMnO4-Doped CaO-Based Sorbent, Fuel, 89: 642-649, doi.org/10.1016/j.fuel.2009.08.041. ##
[20]. Heidari, M., Tahmasebpoor, M., Antzaras, A., & Lemonidou, A. A. (2020). CO2 capture and fluidity performance of CaO-based sorbents: effect of Zr, Al and Ce additives in tri-, bi- and mono-metallic configurations, Process Safety and Environmental Protection 144: 349-365, doi.org/10.1016/j.psep.2020.07.041. ##
[21]. Heidari, M., Mousavi, S. B., Rahmani, F., Clough, P. T., & Ozmen, S. (2022). The novel carbon nanotube-assisted development of highly porous CaZrO3-CaO xerogel with boosted sorption activity towards high-temperature cyclic CO2 capture, Energy conversion and management, 274: 116461, doi.org/10.1016/j.enconman.2022.116461. ##
[22]. Mousavi, S. B., Heidari, M., Rahmani, F., Sene, R. A., Clough, P. T., & Ozmen, S. (2023). Highly robust ZrO2-stabilized CaO nanoadsorbent prepared via a facile one-pot MWCNT-template method for CO2 capture under realistic calcium looping conditions, Journal of cleaner production, 384: 135579. doi.org/10.1016/j.jclepro.2022.135579. ##
[23]. Sun, R., Xiao, R., & Ye, J. (2020). Kinetic analysis about the CO2 Capture Capacity of Lime Mud from Paper Mill in Calcium Looping Process, Energy Science Engineering, 8: 4014-4024, doi.org/10.1002/ese3.792. ##
[24]. Miranda-Pizarro, J., Perejón, A., Valverde, J. M., Sánchez-Jiménez, P. E., & Pérez-Maqueda, L. A. (2016) On the Use of Steel Slag for CO2 Capture at Realistic Calcium Looping Conditions, RSC Advances 6: 37656–37663, doi: 10.1039/C6RA03210A. ##
[25]. Ma, X., Li, Y., Chi, C., Zhang, W., Shi, J., & Duan, L. (2017). CO2 capture performance of mesoporous synthetic sorbent fabricated using carbide slag under realistic calcium looping conditions, Energy and Fuels, 31: 7299–7308, doi.org/10.1021/acs.energyfuels.7b00676. ##
[26]. Sun, Z., Xu, C., Chen, S., & Xiang, W. (2016). Xiang, improvements of CaO-based sorbents for Cyclic CO2 capture using a wet mixing process, Chemical Engineering Journal, 286: 320–328, doi.org/10.1016/j.cej.2015.10.051. ##
[27]. mani, M., Tahmasebpoor, M., Sánchez-Jiménez, P. E., Valverde, J. M., & Moreno, V. (2022). Moreno, Improvement in cyclic CO2 capture performance and fluidization behavior of eggshell-derived CaCO3 particles modified with acetic acid used in calcium looping process, CO2 Utilization 65: 102207, doi.org/10.1016/j.jcou.2022.102207. ##
[28]. Jiménez, P. E. S., Perejón, A., Guerrero, M. B., Valverde, J. M., Ortiz, C., & Maqueda, L. A. P. (2019). Maqueda, high-performance and low-cost macroporous calcium oxide-based materials for thermochemical energy storage in concentrated solar power plants, Applied Energy, 235: 543-552, doi.org/10.1016/j.apenergy.2018.10.131. ##
[29]. J. A. Dean, Lange›s Handbook of Chemistry, 1st edition, New York, McGraw-Hill, 1987, 1-1291, ISBN 0-07-016384-7.
[30]. Busca, G., & Resini, C. (2006). Vibrational spectroscopy for the analyses of geological and inorganic materials, Encyclopedia of Analytical Chemistry, 10954–11008, doi.org/10.1002/9780470027318.a5612m. ##
[31]. Carvalho, J., Araújo, J., & Castro, F. (2011). Alternative low-cost adsorbent for water and wastewater decontamination derived from eggshell waste: an overview, Waste Biomass Valor 2: 157–167. ##
[32]. Nobre, L. C., Santos, S., Palavra, A. M., Calvete, M. J., de Castro, C. A. N., Nobre, B. P. (2020). Nobre, Supercritical Antisolvent Precipitation of Calcium Acetate Fromeggshells, Supercritical Fluids, 163: 104862, doi.org/10.1016/j.supflu.2020.104862. ##
[33]. Aracri, E., Blanco, C. D., & Tzanov, T. (2014). An enzymatic approach to develop a lignin-based adhesive for wool floor coverings, Electronic Supplementary Material (ESI) for Green Chemistry 16: 2597-2603. ##
[34]. Electronic Supplementary Material (ESI) for RSC Advances 2016. ##
[35]. Musumeci, A. W., Frost, R. L., & Waclawik, E. R. (2007). A spectroscopic study of the mineral paceite (calcium acetate), Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67(3-4): 649-661, doi.org/10.1016/j.saa.2006.07.045. ##
[36]. Silaban, A., Narcida, M., & Harrison, D. P. (1992). Calcium acetate as a sorbent precursor for the removal of carbon dioxide from gas streams at high temperature, Resources, Conservation and Recycling 1: 139-153, doi.org/10.1016/0921-3449(92)90012-Q. ##
[37]. Sattari, F., Tahmasebpoor, M., Valverde, J. M., Ortiz, C., & Mohammadpourfard, M. (2021). Modelling of a fluidized bed carbonator reactor for post-combustion CO2 capture considering bed hydrodynamics and sorbentcharacteristics, Chemical Engineering Journal 406: 126762, doi.org/10.1016/j.cej.2020.126762. ##
[38]. Imani, M., Tahmasebpoor, M., Sánchez-Jiménez, P. E., Valverde, J. M., Moreno, V. (2022). Fluidization of nanoparticles: the effect of surface characteristics, The 14th International Conference On Fluidization From fundamentals To Products, doi.org/10.1016/j.cej.2020.126762. ##
[39]. Coppola, A., Salatino, P., Montagnaro, F. (2013). Fluidized bed calcium looping cycles for CO2 capture under oxy-firing calcination conditions: Part 2. Assessment of dolomite vs. limestone, Chemical Engineering Journal 231: 544-549, doi.org/10.1016/j.cej.2013.07.112. ##